Suppr超能文献

非聚集网络上一般随机SIR传染病的实时增长率。

Real-time growth rate for general stochastic SIR epidemics on unclustered networks.

作者信息

Pellis Lorenzo, Spencer Simon E F, House Thomas

机构信息

Warwick Infectious Disease Epidemiology Research Centre (WIDER) and Warwick Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.

Warwick Infectious Disease Epidemiology Research Centre (WIDER) and Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Math Biosci. 2015 Jul;265:65-81. doi: 10.1016/j.mbs.2015.04.006. Epub 2015 Apr 24.

Abstract

Networks have become an important tool for infectious disease epidemiology. Most previous theoretical studies of transmission network models have either considered simple Markovian dynamics at the individual level, or have focused on the invasion threshold and final outcome of the epidemic. Here, we provide a general theory for early real-time behaviour of epidemics on large configuration model networks (i.e. static and locally unclustered), in particular focusing on the computation of the Malthusian parameter that describes the early exponential epidemic growth. Analytical, numerical and Monte-Carlo methods under a wide variety of Markovian and non-Markovian assumptions about the infectivity profile are presented. Numerous examples provide explicit quantification of the impact of the network structure on the temporal dynamics of the spread of infection and provide a benchmark for validating results of large scale simulations.

摘要

网络已成为传染病流行病学的重要工具。此前大多数关于传播网络模型的理论研究,要么考虑个体层面的简单马尔可夫动力学,要么专注于疫情的入侵阈值和最终结果。在此,我们为大型配置模型网络(即静态且局部无聚类)上疫情的早期实时行为提供了一个通用理论,特别关注描述早期指数型疫情增长的马尔萨斯参数的计算。在关于感染性分布的各种马尔可夫和非马尔可夫假设下,给出了分析、数值和蒙特卡罗方法。众多示例明确量化了网络结构对感染传播时间动态的影响,并为验证大规模模拟结果提供了基准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验