Suppr超能文献

非聚集网络上一般随机SIR传染病的实时增长率。

Real-time growth rate for general stochastic SIR epidemics on unclustered networks.

作者信息

Pellis Lorenzo, Spencer Simon E F, House Thomas

机构信息

Warwick Infectious Disease Epidemiology Research Centre (WIDER) and Warwick Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.

Warwick Infectious Disease Epidemiology Research Centre (WIDER) and Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Math Biosci. 2015 Jul;265:65-81. doi: 10.1016/j.mbs.2015.04.006. Epub 2015 Apr 24.

Abstract

Networks have become an important tool for infectious disease epidemiology. Most previous theoretical studies of transmission network models have either considered simple Markovian dynamics at the individual level, or have focused on the invasion threshold and final outcome of the epidemic. Here, we provide a general theory for early real-time behaviour of epidemics on large configuration model networks (i.e. static and locally unclustered), in particular focusing on the computation of the Malthusian parameter that describes the early exponential epidemic growth. Analytical, numerical and Monte-Carlo methods under a wide variety of Markovian and non-Markovian assumptions about the infectivity profile are presented. Numerous examples provide explicit quantification of the impact of the network structure on the temporal dynamics of the spread of infection and provide a benchmark for validating results of large scale simulations.

摘要

网络已成为传染病流行病学的重要工具。此前大多数关于传播网络模型的理论研究,要么考虑个体层面的简单马尔可夫动力学,要么专注于疫情的入侵阈值和最终结果。在此,我们为大型配置模型网络(即静态且局部无聚类)上疫情的早期实时行为提供了一个通用理论,特别关注描述早期指数型疫情增长的马尔萨斯参数的计算。在关于感染性分布的各种马尔可夫和非马尔可夫假设下,给出了分析、数值和蒙特卡罗方法。众多示例明确量化了网络结构对感染传播时间动态的影响,并为验证大规模模拟结果提供了基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验