Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.
Nat Commun. 2018 Jan 12;9(1):169. doi: 10.1038/s41467-017-02547-4.
Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS (SnS-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS lattice, resulting in different photophysical properties as compared with undoped SnS. This SnS-C photocatalyst significantly enhances the CO reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO reduction under visible light, where the in situ carbon-doped SnS nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.
利用太阳能通过人工光合作用将碳氢化合物光催化合成是一种非常理想的可再生能源,可替代传统的化石燃料。本工作采用 L-半胱氨酸水热法合成了一种碳掺杂 SnS(SnS-C)金属二硫属化物纳米结构,该结构在可见光照射下具有高效和选择性的光催化 CO 转化为碳氢化合物的性能。SnS 晶格中的间隙碳原子掺杂导致微应变,与未掺杂的 SnS 相比,表现出不同的光物理性质。这种 SnS-C 光催化剂在可见光下显著提高了 CO 还原活性,光电化学量子效率超过 0.7%。SnS-C 光催化剂为可见光下气相光催化 CO 还原的高光量子效率人工光合作用做出了重要贡献,其中原位碳掺杂 SnS 纳米结构提高了稳定性和光捕获及电荷分离效率,并显著提高了光催化活性。