Suppr超能文献

皮质脑桥神经元的胆碱能优先兴奋。

Preferential cholinergic excitation of corticopontine neurons.

机构信息

Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA.

Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.

出版信息

J Physiol. 2018 May 1;596(9):1659-1679. doi: 10.1113/JP275194. Epub 2018 Feb 20.

Abstract

KEY POINTS

Phasic activation of M1 muscarinic receptors generates transient inhibition followed by longer lasting excitation in neocortical pyramidal neurons. Corticopontine neurons in the mouse prefrontal cortex exhibit weaker cholinergic inhibition, but more robust and longer lasting excitation, than neighbouring callosal projection neurons. Optogenetic release of endogenous ACh in response to single flashes of light (5 ms) preferentially enhances the excitability of corticopontine neurons for many tens of seconds. Cholinergic excitation of corticopontine neurons involves at least three ionic mechanisms: suppression of K 7 currents, activation of the calcium-dependent non-specific cation conductance underlying afterdepolarizations, and activation of what appears to be a calcium-sensitive but calcium-permeable non-specific cation conductance. Preferential cholinergic excitation of prefrontal corticopontine neurons may facilitate top-down attentional processes and behaviours.

ABSTRACT

Pyramidal neurons in layer 5 of the neocortex comprise two broad classes of projection neurons: corticofugal neurons, including corticopontine (CPn) neurons, and intratelencephalic neurons, including commissural/callosal (COM) neurons. These non-overlapping neuron subpopulations represent discrete cortical output channels contributing to perception, decision making and behaviour. CPn and COM neurons have distinct morphological and physiological characteristics, and divergent responses to modulatory transmitters such as serotonin and acetylcholine (ACh). To better understand how ACh regulates cortical output, in slices of mouse prefrontal cortex (PFC) we compared the responsivity of CPn and COM neurons to transient exposure to exogenous or endogenous ACh. In both neuron subtypes, exogenous ACh generated qualitatively similar biphasic responses in which brief hyperpolarization was followed by longer lasting enhancement of excitability. However, cholinergic inhibition was more pronounced in COM neurons, while excitatory responses were larger and longer lasting in CPn neurons. Similarly, optically triggered release of endogenous ACh from cholinergic terminals preferentially and persistently (for ∼40 s) enhanced the excitability of CPn neurons, but had little impact on COM neurons. Cholinergic excitation of CPn neurons involved at least three distinct ionic mechanisms: suppression of K 7 channels (the 'M-current'), activation of the calcium-dependent non-specific cation conductance underlying afterdepolarizations, and activation of what appears to be a calcium-sensitive but calcium-permeable non-specific cation conductance. Our findings demonstrate projection-specific selectivity in cholinergic signalling in the PFC, and suggest that transient release of ACh during behaviour will preferentially promote corticofugal output.

摘要

要点

M1 毒蕈碱受体的阶段性激活会在新皮层锥体神经元中产生短暂的抑制,随后是更长时间的兴奋。与相邻的胼胝体投射神经元相比,小鼠前额叶皮层的皮质桥脑神经元表现出较弱的胆碱能抑制,但更强和更持久的兴奋。对单个光闪光(5 毫秒)的光遗传学释放内源性 ACh 优先增强皮质桥脑神经元的兴奋性数十秒。皮质桥脑神经元的胆碱能兴奋涉及至少三种离子机制:抑制 K7 电流、激活产生后去极化的钙依赖性非特异性阳离子电导,以及激活似乎是钙敏感但钙渗透性的非特异性阳离子电导。前额叶皮质桥脑神经元的优先胆碱能兴奋可能促进自上而下的注意力过程和行为。

摘要

新皮层 5 层的锥体神经元包括两类广泛的投射神经元:皮质传出神经元,包括皮质桥脑(CPn)神经元,和脑内神经元,包括连合/胼胝体(COM)神经元。这些非重叠的神经元亚群代表了离散的皮质输出通道,有助于感知、决策和行为。CPn 和 COM 神经元具有不同的形态和生理特征,以及对调节递质如血清素和乙酰胆碱(ACh)的不同反应。为了更好地了解 ACh 如何调节皮质输出,我们在小鼠前额叶皮层(PFC)的切片中比较了 CPn 和 COM 神经元对短暂暴露于外源性或内源性 ACh 的反应。在外源 ACh 作用下,两种神经元类型均产生了类似的双相反应,其中短暂的超极化后是较长时间的兴奋性增强。然而,在 COM 神经元中,胆碱能抑制更为明显,而 CPn 神经元中的兴奋性反应更大且持续时间更长。同样,光触发从胆碱能末梢释放内源性 ACh 优先且持续(约 40 秒)增强 CPn 神经元的兴奋性,但对 COM 神经元几乎没有影响。CPn 神经元的胆碱能兴奋涉及至少三种不同的离子机制:抑制 K7 通道('M 电流')、激活产生后去极化的钙依赖性非特异性阳离子电导,以及激活似乎是钙敏感但钙渗透性的非特异性阳离子电导。我们的发现表明,在 PFC 中,胆碱能信号传递具有投射特异性选择性,并表明在行为过程中短暂释放 ACh 将优先促进皮质传出。

相似文献

1
皮质脑桥神经元的胆碱能优先兴奋。
J Physiol. 2018 May 1;596(9):1659-1679. doi: 10.1113/JP275194. Epub 2018 Feb 20.
2
介导小鼠内侧前额叶皮质胼胝体投射神经元中 5-羟色胺能兴奋的机制。
Front Neural Circuits. 2018 Jan 18;12:2. doi: 10.3389/fncir.2018.00002. eCollection 2018.
3
小鼠前额叶皮层胼胝体投射神经元的活动依赖性5-羟色胺能兴奋
Front Neural Circuits. 2014 Aug 26;8:97. doi: 10.3389/fncir.2014.00097. eCollection 2014.
4
锥体神经元中M1毒蕈碱受体信号传导的统一假说。
J Physiol. 2017 Mar 1;595(5):1711-1723. doi: 10.1113/JP273627. Epub 2016 Dec 17.
5
成年小鼠前额叶皮质中皮质传出回路的胆碱能激活。
J Neurosci. 2024 Jan 17;44(3):e1388232023. doi: 10.1523/JNEUROSCI.1388-23.2023.
6
拮抗前额叶皮层 6 层的胆碱能和血清素能调节。
Front Neural Circuits. 2018 Jan 4;11:107. doi: 10.3389/fncir.2017.00107. eCollection 2017.
7
新皮层神经元中时相性胆碱能信号的异质性
J Neurophysiol. 2007 Mar;97(3):2215-29. doi: 10.1152/jn.00493.2006. Epub 2006 Nov 22.
8
M1 受体介导新皮质锥体神经元兴奋性的胆碱能调节。
J Neurosci. 2009 Aug 5;29(31):9888-902. doi: 10.1523/JNEUROSCI.1366-09.2009.
9
乙酰胆碱通过烟碱样受体刺激新皮质锥体神经元。
J Neurophysiol. 2015 Apr 1;113(7):2195-209. doi: 10.1152/jn.00716.2014. Epub 2015 Jan 14.
10
投射特异性内侧前额叶皮层神经元的神经调节。
J Neurosci. 2010 Dec 15;30(50):16922-37. doi: 10.1523/JNEUROSCI.3644-10.2010.

引用本文的文献

5
哺乳动物新皮层形态功能特性的变异与趋同
Front Syst Neurosci. 2024 Jun 20;18:1413780. doi: 10.3389/fnsys.2024.1413780. eCollection 2024.
8
胆碱能神经调节前额叶吸引子动力学控制空间工作记忆的表现。
J Neurosci. 2024 Jun 5;44(23):e1225232024. doi: 10.1523/JNEUROSCI.1225-23.2024.
9
成年小鼠前额叶皮质中皮质传出回路的胆碱能激活。
J Neurosci. 2024 Jan 17;44(3):e1388232023. doi: 10.1523/JNEUROSCI.1388-23.2023.
10
大脑中复杂适应性动力学的神经调节控制
Interface Focus. 2023 Apr 14;13(3):20220079. doi: 10.1098/rsfs.2022.0079. eCollection 2023 Jun 6.

本文引用的文献

1
介导小鼠内侧前额叶皮质胼胝体投射神经元中 5-羟色胺能兴奋的机制。
Front Neural Circuits. 2018 Jan 18;12:2. doi: 10.3389/fncir.2018.00002. eCollection 2018.
2
胆碱能基底前脑的输入-输出关系
Cell Rep. 2017 Feb 14;18(7):1817-1830. doi: 10.1016/j.celrep.2017.01.060.
3
锥体神经元中M1毒蕈碱受体信号传导的统一假说。
J Physiol. 2017 Mar 1;595(5):1711-1723. doi: 10.1113/JP273627. Epub 2016 Dec 17.
4
小鼠听觉皮层第5B层主要神经元兴奋性的细胞特异性胆碱能调节
J Neurosci. 2016 Aug 10;36(32):8487-99. doi: 10.1523/JNEUROSCI.0780-16.2016.
5
利用黑视蛋白研究皮层神经元中的G蛋白信号传导。
J Neurophysiol. 2016 Sep 1;116(3):1082-92. doi: 10.1152/jn.00406.2016. Epub 2016 Jun 15.
6
Cre-Lox转基因小鼠胆碱能神经元中通道视紫红质和古菌视紫红质的特性研究
PLoS One. 2016 May 31;11(5):e0156596. doi: 10.1371/journal.pone.0156596. eCollection 2016.
7
阶段性胆碱能信号有什么作用?
Neurobiol Learn Mem. 2016 Apr;130:135-41. doi: 10.1016/j.nlm.2016.02.008. Epub 2016 Feb 18.
8
皮质胆碱能信号传导控制线索的检测。
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1089-97. doi: 10.1073/pnas.1516134113. Epub 2016 Jan 19.
9
M1毒蕈碱型正变构调节剂PQCA可改善恒河猴记忆和注意力可转化测试的表现。
J Pharmacol Exp Ther. 2015 Dec;355(3):442-50. doi: 10.1124/jpet.115.226712. Epub 2015 Oct 7.
10
《生理学杂志》和《实验生理学》中动物实验报告的原则与标准。
J Physiol. 2015 Jun 15;593(12):2547-9. doi: 10.1113/JP270818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验