Suppr超能文献

鉴定海胆胚胎中三种神经元亚型分化所需的神经转录因子。

Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.

作者信息

Slota Leslie A, McClay David R

机构信息

Department of Biology, Duke University, Durham, NC 27708, United States.

Department of Biology, Duke University, Durham, NC 27708, United States.

出版信息

Dev Biol. 2018 Mar 15;435(2):138-149. doi: 10.1016/j.ydbio.2017.12.015. Epub 2018 Jan 10.

Abstract

Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.

摘要

神经系统的正确模式形成对于生物体的生存和复杂行为至关重要。几十年来,胚胎学家一直将海胆作为模型,但我们对海胆神经系统模式形成的理解并不完整。先前的组织化学研究在几种海胆物种的长腕幼虫中鉴定出多种神经递质。然而,对于神经亚型在发育过程中如何、何处以及何时被差异特化,我们知之甚少。在这里,我们研究了红斑海胆幼虫中3种不同神经亚型的神经元亚型特化的分子机制。我们表明,这些亚型是通过Delta/Notch信号通路特化的,并鉴定出每种神经亚型发育所需的不同转录因子。我们的结果表明,achaete-scute和神经生成素分别是顶器5-羟色胺能神经元和纤毛带胆碱能神经元的原神经基因。我们还表明,正位蛋白不是原神经基因,但对于胆碱能/儿茶酚胺能口后神经元的分化是必需的。有趣的是,这些转录因子在脊椎动物神经发生过程中的使用方式类似。我们相信这项研究是构建海胆神经基因调控网络以及寻找保守的后口动物神经发生机制的起点。

相似文献

1
Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.
Dev Biol. 2018 Mar 15;435(2):138-149. doi: 10.1016/j.ydbio.2017.12.015. Epub 2018 Jan 10.
2
Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin .
Evodevo. 2019 Feb 12;10:2. doi: 10.1186/s13227-019-0115-8. eCollection 2019.
3
Neurogenesis in the sea urchin embryo is initiated uniquely in three domains.
Development. 2018 Nov 9;145(21):dev167742. doi: 10.1242/dev.167742.
4
Developmental origin of peripheral ciliary band neurons in the sea urchin embryo.
Dev Biol. 2020 Mar 15;459(2):72-78. doi: 10.1016/j.ydbio.2019.12.011. Epub 2019 Dec 24.
5
Sea urchin neural development and the metazoan paradigm of neurogenesis.
Genesis. 2014 Mar;52(3):208-21. doi: 10.1002/dvg.22750.
6
Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8591-6. doi: 10.1073/pnas.1220903110. Epub 2013 May 6.
7
Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.
Development. 2016 Jan 15;143(2):286-97. doi: 10.1242/dev.124503. Epub 2015 Oct 28.
8
The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes.
Dev Biol. 2020 Apr 15;460(2):139-154. doi: 10.1016/j.ydbio.2019.12.002. Epub 2019 Dec 6.
9
Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
Development. 2017 Oct 1;144(19):3602-3611. doi: 10.1242/dev.151720. Epub 2017 Aug 29.

引用本文的文献

1
Regulatory feedback between VEGF and ERK pathways controls tip-cell expression during sea urchin skeletogenesis.
Development. 2025 Jul 1;152(13). doi: 10.1242/dev.204684. Epub 2025 Jul 15.
2
Light-modulated neural control of sphincter regulation in the evolution of through-gut.
Nat Commun. 2024 Oct 18;15(1):8881. doi: 10.1038/s41467-024-53203-7.
4
The brittle star genome illuminates the genetic basis of animal appendage regeneration.
Nat Ecol Evol. 2024 Aug;8(8):1505-1521. doi: 10.1038/s41559-024-02456-y. Epub 2024 Jul 19.
7
Evolution and Function of the Notch Signaling Pathway: An Invertebrate Perspective.
Int J Mol Sci. 2024 Mar 15;25(6):3322. doi: 10.3390/ijms25063322.
8
Echinobase: a resource to support the echinoderm research community.
Genetics. 2024 May 7;227(1). doi: 10.1093/genetics/iyae002.
9
Rx and its downstream factor, Musashi1, is required for establishment of the apical organ in sea urchin larvae.
Front Cell Dev Biol. 2023 Aug 15;11:1240767. doi: 10.3389/fcell.2023.1240767. eCollection 2023.

本文引用的文献

1
Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
Development. 2017 Oct 1;144(19):3602-3611. doi: 10.1242/dev.151720. Epub 2017 Aug 29.
2
Spatiotemporal regulation of nervous system development in the annelid .
Evodevo. 2017 Aug 1;8:13. doi: 10.1186/s13227-017-0076-8. eCollection 2017.
3
FlyBase at 25: looking to the future.
Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671. doi: 10.1093/nar/gkw1016. Epub 2016 Oct 30.
4
6
Neurogenic gene regulatory pathways in the sea urchin embryo.
Development. 2016 Jan 15;143(2):298-305. doi: 10.1242/dev.125989. Epub 2015 Dec 10.
7
Migratory neuronal progenitors arise from the neural plate borders in tunicates.
Nature. 2015 Nov 19;527(7578):371-4. doi: 10.1038/nature15758. Epub 2015 Oct 28.
8
Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.
Development. 2016 Jan 15;143(2):286-97. doi: 10.1242/dev.124503. Epub 2015 Oct 28.
9
The evolution of early neurogenesis.
Dev Cell. 2015 Feb 23;32(4):390-407. doi: 10.1016/j.devcel.2015.02.004.
10
Sea urchin neural development and the metazoan paradigm of neurogenesis.
Genesis. 2014 Mar;52(3):208-21. doi: 10.1002/dvg.22750.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验