Sur Abhinav, Magie Craig R, Seaver Elaine C, Meyer Néva P
Biology Department, Clark University, 950 Main St., Worcester, MA 01610-1400 USA.
Department of Biological Sciences, Quinnipiac University, 275 Mount Carmel Ave., Hamden, CT 06518-1905 USA.
Evodevo. 2017 Aug 1;8:13. doi: 10.1186/s13227-017-0076-8. eCollection 2017.
How nervous systems evolved remains an unresolved question. Previous studies in vertebrates and arthropods revealed that homologous genes regulate important neurogenic processes such as cell proliferation and differentiation. However, the mechanisms through which such homologs regulate neurogenesis across different bilaterian clades are variable, making inferences about nervous system evolution difficult. A better understanding of neurogenesis in the third major bilaterian clade, Spiralia, would greatly contribute to our ability to deduce the ancestral mechanism of neurogenesis.
Using whole-mount in situ hybridization, we examined spatiotemporal gene expression for homologs of , , , -, , and in embryos and larvae of the spiralian annelid , which has a central nervous system (CNS) comprising a brain and ventral nerve cord. For all homologs examined, we found expression in the neuroectoderm and/or CNS during neurogenesis. Furthermore, the onset of expression and localization within the developing neural tissue for each of these genes indicates putative roles in separate phases of neurogenesis, e.g., in neural precursor cells (NPCs) versus in cells that have exited the cell cycle. -, -, and - are the earliest genes expressed in surface cells in the anterior and ventral neuroectoderm, while - expression initiates slightly later in surface neuroectoderm. - is expressed in single cells in neural and non-neural ectoderm, while - and - are localized to differentiating neural cells in the brain and ventral nerve cord.
These results suggest that the genes investigated in this article are involved in a neurogenic gene regulatory network in . We propose that Ct-SoxB1, Ct-SoxB, and Ct-Ngn are involved in maintaining NPCs in a proliferative state. Ct-Pros may function in division of NPCs, Ct-Ash1 may promote cell cycle exit and ingression of NPC daughter cells, and Ct-NeuroD and Ct-Msi may control neuronal differentiation. Our results support the idea of a common genetic toolkit driving neural development whose molecular architecture has been rearranged within and across clades during evolution. Future functional studies should help elucidate the role of these homologs during neurogenesis and identify which aspects of bilaterian neurogenesis may have been ancestral or were derived within Spiralia.
神经系统如何进化仍是一个未解决的问题。先前对脊椎动物和节肢动物的研究表明,同源基因调控重要的神经发生过程,如细胞增殖和分化。然而,这些同源物在不同两侧对称动物类群中调节神经发生的机制各不相同,这使得推断神经系统的进化变得困难。更好地了解第三大类两侧对称动物类群——螺旋动物门中的神经发生,将极大地有助于我们推断神经发生的祖先机制。
我们使用全胚胎原位杂交技术,检测了螺旋动物门环节动物胚胎和幼虫中、、、-、、和的同源基因的时空表达,该环节动物具有由脑和腹神经索组成的中枢神经系统(CNS)。对于所有检测的同源基因,我们发现在神经发生过程中它们在神经外胚层和/或中枢神经系统中有表达。此外,这些基因中每个基因在发育中的神经组织内的表达起始和定位表明其在神经发生的不同阶段具有假定作用,例如在神经前体细胞(NPC)中以及在已退出细胞周期的细胞中。-、-和-是在前部和腹侧神经外胚层表面细胞中最早表达的基因,而-的表达在表面神经外胚层中稍晚开始。-在神经和非神经外胚层的单个细胞中表达,而-和-定位于脑和腹神经索中正在分化的神经细胞。
这些结果表明本文研究的基因参与了的神经发生基因调控网络。我们提出Ct-SoxB1、Ct-SoxB和Ct-Ngn参与维持NPC处于增殖状态。Ct-Pros可能在NPC的分裂中起作用,Ct-Ash1可能促进NPC子细胞退出细胞周期并向内迁移,而Ct-NeuroD和Ct-Msi可能控制神经元分化。我们的结果支持这样一种观点,即存在一个驱动神经发育的共同遗传工具包,其分子结构在进化过程中在类群内部和类群之间发生了重新排列。未来的功能研究应有助于阐明这些同源物在神经发生过程中的作用,并确定两侧对称动物神经发生的哪些方面可能是祖先特征或在螺旋动物门中衍生而来。