Suppr超能文献

基于新型 S、N 掺杂碳量子点的银离子和半胱氨酸“开-关”型荧光传感器。

Novel S, N-doped carbon quantum dot-based "off-on" fluorescent sensor for silver ion and cysteine.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.

出版信息

Talanta. 2018 Apr 1;180:300-308. doi: 10.1016/j.talanta.2017.12.040. Epub 2017 Dec 14.

Abstract

In this work, sulfur and nitrogen co-doped carbon dots (S,N-CQDs) as highly selective fluorescent probe for silver ion (Ag) and cysteine (Cys) detection were designed and synthesized directly from citric acid and thiamine hydrochloride via a one-step hydrothermal protocol in 63.8% quantum yield. This probe enabled selective detection of Ag with a linear range of 0-10 and 10-250μM and a limit of detection of 0.40μM with respect to the variation in fluorescence induced by target concentration and electron-transfer from S,N-CQDs to Ag. Furthermore, S,N-CQDs/Ag fluorescence can be effectively recovered by virtue of a specific reaction of Cys with silver ion. This fluorescence "turn-on" protocol was applied to determine Cys with two linear ranges of 0-10 and 10-120μM as well as a detection limit of 0.35μM. The corresponding cell experiments were also performed, indicating that the prepared S,N-CQDs possessed low cytotoxicity and good biocompatibility. Ultimately, the practicality and viability of this fluorescent probe were demonstrated through the analysis of silver ion in real river water and human serum samples.

摘要

在这项工作中,我们设计并合成了一种硫氮共掺杂的碳点(S,N-CQDs),作为一种高选择性的荧光探针,用于银离子(Ag)和半胱氨酸(Cys)的检测。这种探针是直接从柠檬酸和盐酸硫胺素通过一步水热法在 63.8%的量子产率下制备得到的。该探针能够选择性地检测 Ag,其线性范围为 0-10 和 10-250μM,检测限为 0.40μM,这是由于目标浓度变化和电子从 S,N-CQDs 转移到 Ag 引起的荧光变化。此外,S,N-CQDs/Ag 的荧光可以通过 Cys 与银离子的特异性反应有效地恢复。这种荧光“开启”的策略被用于检测 Cys,其线性范围分别为 0-10 和 10-120μM,检测限为 0.35μM。相应的细胞实验也得到了进行,表明所制备的 S,N-CQDs 具有低细胞毒性和良好的生物相容性。最终,通过对实际河水和人血清样本中的银离子进行分析,证明了这种荧光探针的实用性和可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验