Suppr超能文献

张量分解与稀疏对数线性模型

TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS.

作者信息

Johndrow James E, Bhattacharya Anirban, Dunson David B

机构信息

Duke University.

Texas A&M University.

出版信息

Ann Stat. 2017;45(1):1-38. doi: 10.1214/15-AOS1414. Epub 2017 Feb 21.

Abstract

Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

摘要

列联表分析通常依赖于对数线性模型,潜在结构分析则提供了一种常见的替代方法。潜在结构模型导致多变量分类数据的概率质量函数的秩降低张量分解,而对数线性模型通过稀疏性实现降维。对于这两种范式中这些降维概念之间的关系,人们知之甚少。我们得出了几个将对数线性模型的支撑与相关概率张量的非负秩联系起来的结果。受这些发现的启发,我们提出了一种新的折叠塔克张量分解类,它连接了现有的PARAFAC和塔克分解,为简洁地表征多变量分类数据提供了一个更灵活的框架。采用贝叶斯推理方法,我们展示了新分解的实证优势。

相似文献

1
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS.张量分解与稀疏对数线性模型
Ann Stat. 2017;45(1):1-38. doi: 10.1214/15-AOS1414. Epub 2017 Feb 21.
2
Algorithms for sparse nonnegative Tucker decompositions.稀疏非负塔克分解算法。
Neural Comput. 2008 Aug;20(8):2112-31. doi: 10.1162/neco.2008.11-06-407.
3
Bayesian factorizations of big sparse tensors.大稀疏张量的贝叶斯因式分解
J Am Stat Assoc. 2015;110(512):1562-1576. doi: 10.1080/01621459.2014.983233. Epub 2016 Jan 15.
4
Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness.高效非负 Tucker 分解:算法与唯一性。
IEEE Trans Image Process. 2015 Dec;24(12):4990-5003. doi: 10.1109/TIP.2015.2478396. Epub 2015 Sep 14.
5
Simplex Factor Models for Multivariate Unordered Categorical Data.多元无序分类数据的单纯形因子模型
J Am Stat Assoc. 2012 Mar 1;107(497):362-377. doi: 10.1080/01621459.2011.646934.
8
Bayesian Robust Tensor Factorization for Incomplete Multiway Data.贝叶斯稳健张量分解在不完全多路数据中的应用。
IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):736-48. doi: 10.1109/TNNLS.2015.2423694. Epub 2015 Jun 9.
9
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.

本文引用的文献

1
Bayesian factorizations of big sparse tensors.大稀疏张量的贝叶斯因式分解
J Am Stat Assoc. 2015;110(512):1562-1576. doi: 10.1080/01621459.2014.983233. Epub 2016 Jan 15.
3
Simplex Factor Models for Multivariate Unordered Categorical Data.多元无序分类数据的单纯形因子模型
J Am Stat Assoc. 2012 Mar 1;107(497):362-377. doi: 10.1080/01621459.2011.646934.
4
Nonparametric Bayes Modeling of Multivariate Categorical Data.多变量分类数据的非参数贝叶斯建模
J Am Stat Assoc. 2012 Jan 1;104(487):1042-1051. doi: 10.1198/jasa.2009.tm08439.
6
Log-Linear Models for Gene Association.基因关联的对数线性模型
J Am Stat Assoc. 2009;104(486):597-607. doi: 10.1198/jasa.2009.0025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验