Li Xiaoshan, Xu Da, Zhou Hua, Li Lexin
Wells Fargo & Company.
University of California, Berkeley.
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
Neuroimaging data often take the form of high dimensional arrays, also known as tensors. Addressing scientific questions arising from such data demands new regression models that take multidimensional arrays as covariates. Simply turning an image array into a vector would both cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a recent work, Zhou et al. (2013) proposed a family of generalized linear tensor regression models based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. Low rank approximation brings the ultrahigh dimensionality to a manageable level and leads to efficient estimation. In this article, we propose a tensor regression model based on the more flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows different number of factors along each mode. Such flexibility leads to several advantages that are particularly suited to neuroimaging analysis, including further reduction of the number of free parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, and a principled way of image downsizing. We also compare the Tucker model with CP numerically on both simulated data and a real magnetic resonance imaging data, and demonstrate its effectiveness in finite sample performance.
神经成像数据通常采用高维数组的形式,也称为张量。解决由此类数据引发的科学问题需要新的回归模型,该模型将多维数组作为协变量。简单地将图像数组转换为向量会导致维度极高,并且会破坏数组固有的空间结构。在最近的一项工作中,周等人(2013年)基于回归系数数组的CP(CANDECOMP/PARAFAC)分解提出了一族广义线性张量回归模型。低秩近似将超高维度降低到可管理的水平,并导致有效估计。在本文中,我们提出了一种基于更灵活的塔克分解的张量回归模型。与CP模型相比,塔克回归模型允许沿每个模式有不同数量的因子。这种灵活性带来了几个特别适合神经成像分析的优点,包括进一步减少自由参数的数量、适应维度不对称的图像、显式建模相互作用以及一种有原则的图像缩小方法。我们还在模拟数据和真实磁共振成像数据上对塔克模型和CP模型进行了数值比较,并证明了其在有限样本性能方面的有效性。