Suppr超能文献

塔克张量回归与神经影像分析

Tucker Tensor Regression and Neuroimaging Analysis.

作者信息

Li Xiaoshan, Xu Da, Zhou Hua, Li Lexin

机构信息

Wells Fargo & Company.

University of California, Berkeley.

出版信息

Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.

Abstract

Neuroimaging data often take the form of high dimensional arrays, also known as tensors. Addressing scientific questions arising from such data demands new regression models that take multidimensional arrays as covariates. Simply turning an image array into a vector would both cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a recent work, Zhou et al. (2013) proposed a family of generalized linear tensor regression models based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. Low rank approximation brings the ultrahigh dimensionality to a manageable level and leads to efficient estimation. In this article, we propose a tensor regression model based on the more flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows different number of factors along each mode. Such flexibility leads to several advantages that are particularly suited to neuroimaging analysis, including further reduction of the number of free parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, and a principled way of image downsizing. We also compare the Tucker model with CP numerically on both simulated data and a real magnetic resonance imaging data, and demonstrate its effectiveness in finite sample performance.

摘要

神经成像数据通常采用高维数组的形式,也称为张量。解决由此类数据引发的科学问题需要新的回归模型,该模型将多维数组作为协变量。简单地将图像数组转换为向量会导致维度极高,并且会破坏数组固有的空间结构。在最近的一项工作中,周等人(2013年)基于回归系数数组的CP(CANDECOMP/PARAFAC)分解提出了一族广义线性张量回归模型。低秩近似将超高维度降低到可管理的水平,并导致有效估计。在本文中,我们提出了一种基于更灵活的塔克分解的张量回归模型。与CP模型相比,塔克回归模型允许沿每个模式有不同数量的因子。这种灵活性带来了几个特别适合神经成像分析的优点,包括进一步减少自由参数的数量、适应维度不对称的图像、显式建模相互作用以及一种有原则的图像缩小方法。我们还在模拟数据和真实磁共振成像数据上对塔克模型和CP模型进行了数值比较,并证明了其在有限样本性能方面的有效性。

相似文献

1
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
3
TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION.基于低秩张量训练估计的张量分位数回归
Ann Appl Stat. 2024 Jun;18(2):1294-1318. doi: 10.1214/23-aoas1835. Epub 2024 Apr 5.
4
Low-Rank Tensor Train Coefficient Array Estimation for Tensor-on-Tensor Regression.张量对张量回归的低秩张量列车系数阵列估计
IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5402-5411. doi: 10.1109/TNNLS.2020.2967022. Epub 2020 Nov 30.
8
Vectorial Dimension Reduction for Tensors Based on Bayesian Inference.基于贝叶斯推理的张量向量维数约简
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4579-4592. doi: 10.1109/TNNLS.2017.2739131. Epub 2017 Nov 21.
9
10
Tensor canonical correlation analysis.张量典型相关分析
Stat. 2020;8(1). doi: 10.1002/sta4.253. Epub 2020 Jan 2.

引用本文的文献

9
TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION.基于低秩张量训练估计的张量分位数回归
Ann Appl Stat. 2024 Jun;18(2):1294-1318. doi: 10.1214/23-aoas1835. Epub 2024 Apr 5.
10

本文引用的文献

4
Regularized matrix regression.正则化矩阵回归
J R Stat Soc Series B Stat Methodol. 2014 Mar 1;76(2):463-483. doi: 10.1111/rssb.12031.
5
Multiscale Adaptive Regression Models for Neuroimaging Data.用于神经影像数据的多尺度自适应回归模型
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
7
Functional generalized linear models with images as predictors.以图像作为预测变量的功能广义线性模型。
Biometrics. 2010 Mar;66(1):61-9. doi: 10.1111/j.1541-0420.2009.01233.x. Epub 2009 May 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验