Suppr超能文献

监测城市社区的抑郁率:电子健康记录的应用。

Monitoring Depression Rates in an Urban Community: Use of Electronic Health Records.

机构信息

Denver Public Health, Denver Health, Denver, Colorado (Dr Davidson and Ms McCormick); Department of Medicine, Denver Health, Denver, Colorado (Dr Havranek); Health Services Research, Denver Health, Denver, Colorado (Mr Durfee); Kaiser Permanente Colorado, Institute for Health Research, Denver, Colorado (Drs Xu, Steiner, and Beck); and Department of Medicine, University of Rochester Medical Center, Rochester, New York (Dr Oronce).

出版信息

J Public Health Manag Pract. 2018 Nov/Dec;24(6):E6-E14. doi: 10.1097/PHH.0000000000000751.

Abstract

OBJECTIVES

Depression is the most common mental health disorder and mediates outcomes for many chronic diseases. Ability to accurately identify and monitor this condition, at the local level, is often limited to estimates from national surveys. This study sought to compare and validate electronic health record (EHR)-based depression surveillance with multiple data sources for more granular demographic subgroup and subcounty measurements.

DESIGN/SETTING: A survey compared data sources for the ability to provide subcounty (eg, census tract [CT]) depression prevalence estimates. Using 2011-2012 EHR data from 2 large health care providers, and American Community Survey data, depression rates were estimated by CT for Denver County, Colorado. Sociodemographic and geographic (residence) attributes were analyzed and described. Spatial analysis assessed for clusters of higher or lower depression prevalence.

MAIN OUTCOME MEASURE(S): Depression prevalence estimates by CT.

RESULTS

National and local survey-based depression prevalence estimates ranged from 7% to 17% but were limited to county level. Electronic health record data provided subcounty depression prevalence estimates by sociodemographic and geographic groups (CT range: 5%-20%). Overall depression prevalence was 13%; rates were higher for women (16% vs men 9%), whites (16%), and increased with age and homeless patients (18%). Areas of higher and lower EHR-based, depression prevalence were identified.

CONCLUSIONS

Electronic health record-based depression prevalence varied by CT, gender, race/ethnicity, age, and living status. Electronic health record-based surveillance complements traditional methods with greater timeliness and granularity. Validation through subcounty-level qualitative or survey approaches should assess accuracy and address concerns about EHR selection bias. Public health agencies should consider the opportunity and evaluate EHR system data as a surveillance tool to estimate subcounty chronic disease prevalence.

摘要

目的

抑郁症是最常见的心理健康障碍,也是许多慢性疾病的结果。在当地一级准确识别和监测这种情况的能力往往限于全国调查的估计。本研究旨在比较和验证基于电子健康记录(EHR)的抑郁监测与多种数据源,以提供更精细的人口统计亚组和次县测量。

设计/设置:一项调查比较了数据源,以提供次县(例如,普查区[CT])抑郁流行率估计值。使用来自 2 家大型医疗保健提供商的 2011-2012 年 EHR 数据和美国社区调查数据,对科罗拉多州丹佛县的 CT 进行了抑郁率估计。分析和描述了社会人口统计学和地理(居住)属性。空间分析评估了更高或更低的抑郁流行率的集群。

主要观察指标

按 CT 计算的抑郁流行率估计值。

结果

基于全国和地方调查的抑郁流行率估计值在 7%至 17%之间,但仅限于县一级。电子健康记录数据按社会人口统计学和地理群体(CT 范围:5%-20%)提供次县的抑郁流行率估计值。总体抑郁流行率为 13%;女性(16%比男性 9%)、白人(16%)和年龄较大的患者以及无家可归患者(18%)的比例较高。确定了 EHR 为基础的、更高和更低的抑郁流行率的区域。

结论

EHR 为基础的抑郁流行率因 CT、性别、种族/民族、年龄和生活状况而异。EHR 为基础的监测通过更及时和更精细的方式补充了传统方法。通过次县一级的定性或调查方法进行验证,应评估准确性并解决对 EHR 选择偏差的担忧。公共卫生机构应考虑这一机会,并评估 EHR 系统数据作为估计次县慢性病流行率的监测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9c/6170150/90e135c65b4a/jpump-24-0e6-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验