Suppr超能文献

用于人群健康管理的电子健康记录:基于电子健康记录得出的高血压患病率测量值与既定调查数据的比较

Electronic Health Records for Population Health Management: Comparison of Electronic Health Record-Derived Hypertension Prevalence Measures Against Established Survey Data.

作者信息

Allen Katie S, Valvi Nimish, Gibson P Joseph, McFarlane Timothy, Dixon Brian E

机构信息

Regenstrief Institute, Inc, Indianapolis, IN, United States.

Richard M Fairbanks School of Public Health, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.

出版信息

Online J Public Health Inform. 2024 Mar 13;16:e48300. doi: 10.2196/48300.

Abstract

BACKGROUND

Hypertension is the most prevalent risk factor for mortality globally. Uncontrolled hypertension is associated with excess morbidity and mortality, and nearly one-half of individuals with hypertension do not have the condition under control. Data from electronic health record (EHR) systems may be useful for community hypertension surveillance, filling a gap in local public health departments' community health assessments and supporting the public health data modernization initiatives currently underway. To identify patients with hypertension, computable phenotypes are required. These phenotypes leverage available data elements-such as vitals measurements and medications-to identify patients diagnosed with hypertension. However, there are multiple methodologies for creating a phenotype, and the identification of which method most accurately reflects real-world prevalence rates is needed to support data modernization initiatives.

OBJECTIVE

This study sought to assess the comparability of 6 different EHR-based hypertension prevalence estimates with estimates from a national survey. Each of the prevalence estimates was created using a different computable phenotype. The overarching goal is to identify which phenotypes most closely align with nationally accepted estimations.

METHODS

Using the 6 different EHR-based computable phenotypes, we calculated hypertension prevalence estimates for Marion County, Indiana, for the period from 2014 to 2015. We extracted hypertension rates from the Behavioral Risk Factor Surveillance System (BRFSS) for the same period. We used the two 1-sided t test (TOST) to test equivalence between BRFSS- and EHR-based prevalence estimates. The TOST was performed at the overall level as well as stratified by age, gender, and race.

RESULTS

Using both 80% and 90% CIs, the TOST analysis resulted in 2 computable phenotypes demonstrating rough equivalence to BRFSS estimates. Variation in performance was noted across phenotypes as well as demographics. TOST with 80% CIs demonstrated that the phenotypes had less variance compared to BRFSS estimates within subpopulations, particularly those related to racial categories. Overall, less variance occurred on phenotypes that included vitals measurements.

CONCLUSIONS

This study demonstrates that certain EHR-derived prevalence estimates may serve as rough substitutes for population-based survey estimates. These outcomes demonstrate the importance of critically assessing which data elements to include in EHR-based computer phenotypes. Using comprehensive data sources, containing complete clinical data as well as data representative of the population, are crucial to producing robust estimates of chronic disease. As public health departments look toward data modernization activities, the EHR may serve to assist in more timely, locally representative estimates for chronic disease prevalence.

摘要

背景

高血压是全球范围内导致死亡的最普遍风险因素。未得到控制的高血压与发病率和死亡率过高相关,并且近一半的高血压患者病情未得到控制。电子健康记录(EHR)系统的数据可能有助于社区高血压监测,填补当地公共卫生部门社区健康评估的空白,并支持当前正在进行的公共卫生数据现代化倡议。为了识别高血压患者,需要可计算的表型。这些表型利用现有的数据元素,如生命体征测量值和药物治疗信息,来识别被诊断为高血压的患者。然而,创建表型有多种方法,需要确定哪种方法最准确地反映实际患病率,以支持数据现代化倡议。

目的

本研究旨在评估6种基于电子健康记录的高血压患病率估计值与一项全国性调查估计值的可比性。每种患病率估计值都是使用不同的可计算表型创建的。总体目标是确定哪些表型与全国公认的估计值最接近。

方法

我们使用6种不同的基于电子健康记录的可计算表型,计算了2014年至2015年印第安纳州马里恩县的高血压患病率估计值。我们提取了同一时期行为风险因素监测系统(BRFSS)的高血压发病率。我们使用双侧单侧t检验(TOST)来检验基于BRFSS和基于电子健康记录的患病率估计值之间的等效性。TOST在总体水平以及按年龄、性别和种族分层的情况下进行。

结果

使用80%和90%的置信区间,TOST分析得出2种可计算表型与BRFSS估计值大致等效。不同表型以及不同人口统计学特征的表现存在差异。80%置信区间的TOST表明各表型在亚人群中的方差小于BRFSS估计值,尤其是与种族类别相关的亚人群。总体而言,包含生命体征测量值的表型方差较小。

结论

本研究表明,某些基于电子健康记录得出的患病率估计值可大致替代基于人群的调查估计值。这些结果表明了严格评估在基于电子健康记录的计算机表型中应包含哪些数据元素的重要性。使用包含完整临床数据以及具有人群代表性数据的综合数据源对于得出可靠的慢性病估计值至关重要。随着公共卫生部门寻求开展数据现代化活动,电子健康记录可能有助于更及时地得出具有本地代表性的慢性病患病率估计值。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验