Via Department of Civil and Environmental Engineering and Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nat Nanotechnol. 2018 Mar;13(3):253-259. doi: 10.1038/s41565-017-0029-3. Epub 2018 Jan 15.
Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.
下一代 DNA 测序和宏基因组分析为环保型纳米粒子的设计提供了强大的工具。在这里,我们使用环境微生物模型群落(即废水-活性污泥)来证明这种方法,该群落中添加了具有不同表面涂层和形态的金纳米粒子。宏基因组分析在检测金纳米球和纳米棒对微生物群落的反应方面非常敏感,这些纳米球和纳米棒分别具有十六烷基三甲基溴化铵或聚丙烯酸表面涂层。我们观察到,纳米粒子的形态对微生物群落结构的塑造作用强于表面涂层。无论是在分类学基因还是功能基因的组成方面,都存在着一致的趋势,其中包括与细胞应激相关的抗生素抗性基因、金属抗性基因和与公共卫生相关的基因转移元件。鉴于纳米粒子的形态保持不变,金的溶解的潜在影响是最小的。表面涂层控制着纳米粒子在生物颗粒相与水相间的分配。