Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, T6G 1H9, AB, Canada.
Department of Mechanical Engineering, Biomicrofluidics Lab, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
Sci Rep. 2018 Jan 15;8(1):784. doi: 10.1038/s41598-017-18724-w.
The development of nano-enabled composite materials has led to a paradigm shift in the manufacture of high-performance nanocomposite membranes with enhanced permeation, thermo-mechanical, and antibacterial properties. The major challenges to the successful incorporation of nanoparticles (NPs) to polymer films are the severe aggregation of the NPs and the weak compatibility of NPs with polymers. These two phenomena lead to the formation of non-selective voids at the interface of the polymer and NPs, which adversely affect the separation performance of the membrane. To overcome these challenges, we have developed a new method for the fabrication of robust TFN reverse osmosis membranes. This approach relies on the simultaneous synthesis and surface functionalization of TiO NPs in an organic solvent (heptane) via biphasic solvothermal reaction. The resulting stable suspension of the TiO NPs in heptane was then utilized in the interfacial (in-situ) polymerization reaction where the NPs were entrapped within the matrix of the polyamide (PA) membrane. TiO NPs of 10 nm were effectively incorporated into the thin PA layer and improved the thermal stability and anti-biofouling properties of the resulting TFN membranes. These features make our synthesized membranes potential candidates for applications where the treatment of high-temperature streams containing biomaterials is desirable.
纳米复合材料的发展导致了高性能纳米复合膜制造的范式转变,这些膜具有增强的渗透、热机械和抗菌性能。将纳米粒子 (NPs) 成功纳入聚合物薄膜的主要挑战是 NPs 的严重聚集和 NPs 与聚合物的弱兼容性。这两种现象导致在聚合物和 NPs 的界面处形成非选择性空隙,这会对膜的分离性能产生不利影响。为了克服这些挑战,我们开发了一种制造坚固 TFN 反渗透膜的新方法。该方法依赖于通过两相溶剂热反应在有机溶剂(庚烷)中同时合成和表面功能化 TiO2 NPs。然后,将在庚烷中稳定悬浮的 TiO2 NPs 用于界面(原位)聚合反应中,其中 NPs 被包埋在聚酰胺 (PA) 膜的基质中。10nm 的 TiO2 NPs 有效地掺入到薄的 PA 层中,提高了所得 TFN 膜的热稳定性和抗生物污染性能。这些特性使我们合成的膜成为处理含有生物材料的高温料流的理想候选材料。