Suppr超能文献

统计中介分析中用于对多面构念进行建模的双因素方法。

A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis.

作者信息

Gonzalez Oscar, MacKinnon David P

机构信息

Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ 85287-1104.

出版信息

Educ Psychol Meas. 2018;78(1):5-31. doi: 10.1177/0013164416673689. Epub 2016 Oct 14.

Abstract

Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to an outcome. However, current methods do not allow researchers to study the relationships between general and specific aspects of a construct to an outcome simultaneously. This study proposes a bifactor measurement model for the mediating construct as a way to parse variance and represent the general aspect and specific facets of a construct simultaneously. Monte Carlo simulation results are presented to help determine the properties of mediated effect estimation when the mediator has a bifactor structure and a specific facet of a construct is the true mediator. This study also investigates the conditions when researchers can detect the mediated effect when the multidimensionality of the mediator is ignored and treated as unidimensional. Simulation results indicated that the mediation model with a bifactor mediator measurement model had and power to detect the mediated effect with a sample size greater than 500 and medium - and -paths. Also, results indicate that parameter bias and detection of the mediated effect in both the data-generating model and the misspecified model varies as a function of the amount of facet variance represented in the mediation model. This study contributes to the largely unexplored area of measurement issues in statistical mediation analysis.

摘要

统计中介分析使研究人员能够在所研究的因果过程中识别出最重要的中介构念。当假设的中介构念由多个相关方面组成时,识别特定的中介尤为重要。构念及其方面的一般定义与结果的关联可能不同。然而,目前的方法不允许研究人员同时研究构念的一般方面和特定方面与结果之间的关系。本研究提出了一种用于中介构念的双因素测量模型,作为一种解析方差并同时表示构念的一般方面和特定方面的方法。给出了蒙特卡罗模拟结果,以帮助确定当中介具有双因素结构且构念的特定方面是真正的中介时,中介效应估计的性质。本研究还调查了研究人员在忽略中介的多维性并将其视为单维时能够检测到中介效应的条件。模拟结果表明,具有双因素中介测量模型的中介模型在样本量大于500且路径为中等时,有能力检测到中介效应。此外,结果表明,数据生成模型和错误指定模型中的参数偏差以及中介效应的检测会随着中介模型中所表示的方面方差量的变化而变化。本研究为统计中介分析中很大程度上未被探索的测量问题领域做出了贡献。

相似文献

1
A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis.
Educ Psychol Meas. 2018;78(1):5-31. doi: 10.1177/0013164416673689. Epub 2016 Oct 14.
3
The measurement of the mediator and its influence on statistical mediation conclusions.
Psychol Methods. 2021 Feb;26(1):1-17. doi: 10.1037/met0000263. Epub 2020 Mar 16.
6
Bias, Type I Error Rates, and Statistical Power of a Latent Mediation Model in the Presence of Violations of Invariance.
Educ Psychol Meas. 2018 Jun;78(3):460-481. doi: 10.1177/0013164416684169. Epub 2017 Jan 6.
7
Evaluating the Factor Structure of Each Facet of the Five Facet Mindfulness Questionnaire.
Mindfulness (N Y). 2019 Dec;10(12):2629-2646. doi: 10.1007/s12671-019-01235-2. Epub 2019 Oct 7.
8
Causal mediation analysis with multiple mediators in the presence of treatment noncompliance.
Stat Med. 2018 May 20;37(11):1810-1829. doi: 10.1002/sim.7632. Epub 2018 Mar 15.
10
POWER ANALYSIS FOR COMPLEX MEDIATIONAL DESIGNS USING MONTE CARLO METHODS.
Struct Equ Modeling. 2010;17(3):510-534. doi: 10.1080/10705511.2010.489379.

引用本文的文献

1
Estimating latent baseline-by-treatment interactions in statistical mediation analysis.
Struct Equ Modeling. 2023;30(6):914-925. doi: 10.1080/10705511.2023.2193312. Epub 2023 May 3.
2
Using causal mediation to examine self-efficacy as a mechanism through which continuing care interventions reduce alcohol use.
Psychol Addict Behav. 2024 Dec;38(8):871-878. doi: 10.1037/adb0001011. Epub 2024 Mar 28.
3
The Effect of Noninvariance on the Estimation of the Mediated Effect in the Two-Wave Mediation Model.
Struct Equ Modeling. 2022;29(6):908-919. doi: 10.1080/10705511.2022.2067164. Epub 2022 Jun 10.
4
Accommodating a Latent XM Interaction in Statistical Mediation Analysis.
Multivariate Behav Res. 2023 Jul-Aug;58(4):659-674. doi: 10.1080/00273171.2022.2119928. Epub 2022 Oct 12.
6
The measurement of the mediator and its influence on statistical mediation conclusions.
Psychol Methods. 2021 Feb;26(1):1-17. doi: 10.1037/met0000263. Epub 2020 Mar 16.
7
Exploring the influence of self-perceptions on the relationship between motor competence and identity in adolescents.
PLoS One. 2019 Nov 4;14(11):e0224653. doi: 10.1371/journal.pone.0224653. eCollection 2019.
8
Confounding in statistical mediation analysis: What it is and how to address it.
J Couns Psychol. 2017 Nov;64(6):659-671. doi: 10.1037/cou0000242.
9
Comparing the predictive validity of the four-factor and five-factor (bifactor) measurement structures of the drinking motives questionnaire.
Drug Alcohol Depend. 2017 Dec 1;181:108-115. doi: 10.1016/j.drugalcdep.2017.09.012. Epub 2017 Oct 7.
10
"Scaling-out" evidence-based interventions to new populations or new health care delivery systems.
Implement Sci. 2017 Sep 6;12(1):111. doi: 10.1186/s13012-017-0640-6.

本文引用的文献

1
Bias, Type I Error Rates, and Statistical Power of a Latent Mediation Model in the Presence of Violations of Invariance.
Educ Psychol Meas. 2018 Jun;78(3):460-481. doi: 10.1177/0013164416684169. Epub 2017 Jan 6.
3
The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model.
Multivariate Behav Res. 2016 Sep-Oct;51(5):681-697. doi: 10.1080/00273171.2016.1224154.
4
A Comparison of Bifactor and Second-Order Models of Quality of Life.
Multivariate Behav Res. 2006 Jun 1;41(2):189-225. doi: 10.1207/s15327906mbr4102_5.
5
The Impact of Specification Error on the Estimation, Testing, and Improvement of Structural Equation Models.
Multivariate Behav Res. 1988 Jan 1;23(1):69-86. doi: 10.1207/s15327906mbr2301_4.
6
Evaluating bifactor models: Calculating and interpreting statistical indices.
Psychol Methods. 2016 Jun;21(2):137-50. doi: 10.1037/met0000045. Epub 2015 Nov 2.
7
Applying Bifactor Statistical Indices in the Evaluation of Psychological Measures.
J Pers Assess. 2016;98(3):223-37. doi: 10.1080/00223891.2015.1089249. Epub 2015 Oct 29.
8
Higher-Order and Bifactor Models of the Drinking Motives Questionnaire.
Assessment. 2017 Mar;24(2):222-231. doi: 10.1177/1073191115603503. Epub 2016 Jul 28.
9
When the test of mediation is more powerful than the test of the total effect.
Behav Res Methods. 2015 Jun;47(2):424-42. doi: 10.3758/s13428-014-0481-z.
10
Invited Paper: The Rediscovery of Bifactor Measurement Models.
Multivariate Behav Res. 2012 Sep 1;47(5):667-696. doi: 10.1080/00273171.2012.715555.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验