1 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida.
2 Center for Computational Sciences, University of Miami , Miller School of Medicine, Miami, Florida.
Stem Cells Dev. 2018 Jun 15;27(12):819-830. doi: 10.1089/scd.2017.0265. Epub 2018 Mar 20.
Microgravity-induced alterations in the autonomic nervous system (ANS) contribute to derangements in both the mechanical and electrophysiological function of the cardiovascular system, leading to severe symptoms in humans following space travel. Because the ANS forms embryonically from neural crest (NC) progenitors, we hypothesized that microgravity can impair NC-derived cardiac structures. Accordingly, we conducted in vitro simulated microgravity experiments employing NC genetic lineage tracing in mice with cKit, Isl1nLacZ, and Wnt1-Cre reporter alleles. Inducible fate mapping in adult mouse hearts and pluripotent stem cells (iPSCs) demonstrated reduced cKit-mediated labeling of both NC-derived cardiomyocytes and autonomic neurons (P < 0.0005 vs. controls). Whole transcriptome analysis, suggested that this effect was associated with repressed cardiac NC- and upregulated mesoderm-related gene expression profiles, coupled with abnormal bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β) and Wnt/β-catenin signaling. To separate the manifestations of simulated microgravity on NC versus mesodermal-cardiac derivatives, we conducted Isl1nLacZ lineage analyses, which indicated an approximately 3-fold expansion (P < 0.05) in mesoderm-derived Isl-1 pacemaker sinoatrial nodal cells; and an approximately 3-fold reduction (P < 0.05) in cardiac NC-derived ANS cells, including sympathetic nerves and Isl-1 cardiac ganglia. Finally, NC-specific fate mapping with a Wnt1-Cre reporter iPSC model of murine NC development confirmed that simulated microgravity directly impacted the in vitro development of cardiac NC progenitors and their contribution to the sympathetic and parasympathetic innervation of the iPSC-derived myocardium. Altogether, these findings reveal an important role for gravity in the development of NCs and their postnatal derivatives, and have important therapeutic implications for human space exploration, providing insights into cellular and molecular mechanisms of microgravity-induced cardiomyopathies/channelopathies.
微重力引起的自主神经系统(ANS)改变导致心血管系统的机械和电生理功能紊乱,导致人类在太空旅行后出现严重症状。由于 ANS 是从神经嵴(NC)祖细胞胚胎形成的,我们假设微重力会损害 NC 衍生的心脏结构。因此,我们进行了体外模拟微重力实验,使用具有 cKit、Isl1nLacZ 和 Wnt1-Cre 报告基因等位基因的小鼠进行 NC 遗传谱系追踪。成年小鼠心脏和多能干细胞(iPSC)中的诱导性命运图谱显示,cKit 介导的 NC 衍生的心肌细胞和自主神经元标记均减少(与对照组相比,P<0.0005)。全转录组分析表明,这种效应与受抑的心脏 NC 和上调的中胚层相关基因表达谱有关,同时伴有异常的骨形态发生蛋白(BMP)/转化生长因子β(TGF-β)和 Wnt/β-连环蛋白信号。为了分离模拟微重力对 NC 与中胚层-心脏衍生物的表现,我们进行了 Isl1nLacZ 谱系分析,结果表明中胚层衍生的 Isl-1 起搏窦房结细胞大约扩增了 3 倍(P<0.05);而心脏 NC 衍生的 ANS 细胞,包括交感神经和 Isl-1 心脏神经节,减少了大约 3 倍(P<0.05)。最后,使用 Wnt1-Cre 报告基因 iPSC 模型对鼠 NC 发育进行 NC 特异性命运图谱分析,证实模拟微重力直接影响心脏 NC 祖细胞的体外发育及其对 iPSC 衍生心肌的交感和副交感神经支配。总之,这些发现揭示了重力在 NC 及其出生后衍生物发育中的重要作用,对人类太空探索具有重要的治疗意义,为微重力诱导的心肌病/通道病提供了细胞和分子机制的见解。