Suppr超能文献

油菜素内酯通过 BZR1 主导植物热形态发生的激素调节。

Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1.

机构信息

Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann Strasse 5, 06120 Halle (Saale), Germany; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.

Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.

出版信息

Curr Biol. 2018 Jan 22;28(2):303-310.e3. doi: 10.1016/j.cub.2017.11.077. Epub 2018 Jan 11.

Abstract

Thermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [1, 2]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [3]). It involves photoreceptors that can also sense changes in ambient temperature [3-5] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [6]). In addition, PIF4 transcript accumulation is tightly controlled by the evening complex member EARLY FLOWERING 3 [7, 8]. According to the current understanding, PIF4 activates growth-promoting genes directly but also via inducing auxin biosynthesis and signaling, resulting in cell elongation. Based on a mutagenesis screen in the model plant Arabidopsis thaliana for mutants with defects in temperature-induced hypocotyl elongation, we show here that both PIF4 and auxin function depend on brassinosteroids. Genetic and pharmacological analyses place brassinosteroids downstream of PIF4 and auxin. We found that brassinosteroids act via the transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), which accumulates in the nucleus at high temperature, where it induces expression of growth-promoting genes. Furthermore, we show that at elevated temperature BZR1 binds to the promoter of PIF4, inducing its expression. These findings suggest that BZR1 functions in an amplifying feedforward loop involved in PIF4 activation. Although numerous negative regulators of PIF4 have been described, we identify BZR1 here as a true temperature-dependent positive regulator of PIF4, acting as a major growth coordinator.

摘要

热形态发生被定义为一系列形态变化,这些变化共同作用可能有助于适应通常升高的环境温度的适应性生长[1,2]。虽然温暖诱导信号转导的许多细节仍然难以捉摸,但最近与光信号的相似性变得明显(综述于[3])。它涉及到可以感知环境温度变化的光感受器[3-5],并通过抑制温度信息中央整合因子 PHYTOCHROME-INTERACTING FACTOR 4(PIF4[6])的蛋白质活性来发挥作用。此外,PIF4 转录物的积累受到昼夜节律复合物成员 EARLY FLOWERING 3 [7,8]的紧密控制。根据目前的理解,PIF4 通过直接激活促进生长的基因,也通过诱导生长素的生物合成和信号转导,从而导致细胞伸长。根据在模式植物拟南芥中进行的温度诱导下胚轴伸长缺陷突变体的诱变筛选,我们在这里表明,PIF4 和生长素的功能都依赖于油菜素内酯。遗传和药理学分析将油菜素内酯置于 PIF4 和生长素的下游。我们发现油菜素内酯通过转录因子 BRASSINAZOLE RESISTANT 1(BZR1)发挥作用,BZR1 在高温下积累在核内,在那里它诱导促进生长的基因表达。此外,我们发现 BZR1 在高温下与 PIF4 的启动子结合,诱导其表达。这些发现表明,BZR1 在涉及 PIF4 激活的放大正反馈回路中发挥作用。尽管已经描述了许多 PIF4 的负调节剂,但我们在这里将 BZR1 鉴定为 PIF4 的真正的温度依赖性正调节剂,作为主要的生长协调因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验