Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China (SUSTC), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
Department of Physics, The Chinese University of Hong Kong, New Territories, 999077, Hong Kong.
Adv Mater. 2018 Mar;30(10). doi: 10.1002/adma.201705745. Epub 2018 Jan 16.
High-performance unipolar n-type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron-deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide-functionalized thiazoles, 5,5'-bithiazole-4,4'-dicarboxyimide (BTzI) and 2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all-acceptor homopolymers, and the resulting polymer poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) exhibits unipolar n-type transport with a remarkable electron mobility (μ ) of 1.61 cm V s , low off-currents (I ) of 10 -10 A, and substantial current on/off ratios (I /I ) of 10 -10 in organic thin-film transistors. The all-acceptor homopolymer shows distinctive advantages over prevailing n-type donor-acceptor copolymers, which suffer from ambipolar transport with high I s > 10 A and small I /I s < 10 . The results demonstrate that the all-acceptor approach is superior to the donor-acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.
高性能的单极性 n 型聚合物半导体对于推进有机电子学领域至关重要,这依赖于设计和合成具有良好溶解性、有利几何形状和优化的电性能的新型缺电子构建块。在此,成功合成了两种新型的酰亚胺官能化噻唑,5,5'-联噻唑-4,4'-二羧酸二酰亚胺(BTzI)和 2,2'-联噻唑并噻吩基-4,4',10,10'-四羧酸二酰亚胺(DTzTI)。单晶分析和物理化学研究表明,DTzTI 是构建全受体均聚物的优异构建块,所得聚合物聚(2,2'-联噻唑并噻吩基-4,4',10,10'-四羧酸二酰亚胺)(PDTzTI)表现出单极性 n 型输运,具有显著的电子迁移率(μ)为 1.61 cm V s,低截止电流(I)为 10 -10 A,以及在有机薄膜晶体管中具有较大的电流开关比(I /I)为 10 -10。全受体均聚物与普遍的 n 型给体-受体共聚物相比具有显著的优势,后者具有双极性输运,具有较高的 I s>10 A 和较小的 I /I s<10。结果表明,全受体方法优于给体-受体方法,导致具有更理想晶体管性能特征的单极性电子输运。