Suppr超能文献

木质素解聚的光明面:迈向新型平台化学品。

Bright Side of Lignin Depolymerization: Toward New Platform Chemicals.

机构信息

Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.

出版信息

Chem Rev. 2018 Jan 24;118(2):614-678. doi: 10.1021/acs.chemrev.7b00588. Epub 2018 Jan 16.

Abstract

Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-derived platform chemicals.

摘要

木质素是木质纤维素的主要成分,是地球上最大的芳香族建筑砌块来源,具有作为生物基产品生产原料的巨大潜力。尽管木质素结构坚固且不规则,最初存在一些挑战,但这种引人入胜的芳香族生物聚合物的利用已经取得了长足的进步:最近,许多有创意的策略通过催化或生物催化解聚以高收率提供了明确的产品。本综述的目的是深入了解这些新方法以及这些新兴结构在合成生物基聚合物或具有药理活性的分子方面的潜在应用。综述还总结了木质素基化合物的功能化或去功能化的现有策略。沿着从原始木质纤维素通过解聚到应用的整个价值链,尽可能地出现了特定的木质素基化合物,它们将来可能被视为有潜力的木质素衍生平台化学品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/460b/5785760/8baea1f33386/cr-2017-00588d_0001.jpg

相似文献

1
Bright Side of Lignin Depolymerization: Toward New Platform Chemicals.
Chem Rev. 2018 Jan 24;118(2):614-678. doi: 10.1021/acs.chemrev.7b00588. Epub 2018 Jan 16.
2
Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
Acc Chem Res. 2023 Dec 19;56(24):3558-3571. doi: 10.1021/acs.accounts.3c00514. Epub 2023 Nov 29.
3
Catalytic Strategies Towards Lignin-Derived Chemicals.
Top Curr Chem (Cham). 2018 Aug 27;376(5):36. doi: 10.1007/s41061-018-0214-3.
4
Downstream Processing Strategies for Lignin-First Biorefinery.
ChemSusChem. 2020 Oct 7;13(19):5199-5212. doi: 10.1002/cssc.202001085. Epub 2020 Aug 28.
5
Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives.
iScience. 2021 Feb 20;24(3):102211. doi: 10.1016/j.isci.2021.102211. eCollection 2021 Mar 19.
6
Creative biological lignin conversion routes toward lignin valorization.
Trends Biotechnol. 2022 Dec;40(12):1550-1566. doi: 10.1016/j.tibtech.2022.09.014. Epub 2022 Oct 18.
7
A molecular motor from lignocellulose.
Green Chem. 2022 Apr 9;24(9):3689-3696. doi: 10.1039/d2gc00291d. eCollection 2022 May 10.
8
Formic-acid-induced depolymerization of oxidized lignin to aromatics.
Nature. 2014 Nov 13;515(7526):249-52. doi: 10.1038/nature13867. Epub 2014 Nov 2.
9
Bacterial valorization of lignin for the sustainable production of value-added bioproducts.
Int J Biol Macromol. 2024 Nov;279(Pt 1):135171. doi: 10.1016/j.ijbiomac.2024.135171. Epub 2024 Aug 29.
10
Biosourced Vanillin-Based Building Blocks for Organic Electronic Materials.
J Org Chem. 2021 Dec 3;86(23):16548-16557. doi: 10.1021/acs.joc.1c01869. Epub 2021 Nov 12.

引用本文的文献

1
Catalytic refining lignin into toluene over atomically dispersed Cu/Ni dual sites.
Nat Commun. 2025 Aug 26;16(1):7967. doi: 10.1038/s41467-025-63286-5.
2
Lignin-Derived Methoxyterephthalates for Performance-Advantaged Polymers and Plasticizers.
ACS Sustain Chem Eng. 2025 May 5;13(17):6342-6354. doi: 10.1021/acssuschemeng.5c01330. Epub 2025 Apr 22.
3
Redox-neutral photocatalytic cleavage and -difluoroalkenylation of lignin linkages.
Sci Adv. 2025 Aug 15;11(33):eady2227. doi: 10.1126/sciadv.ady2227.
4
Lignin Extraction and Condensation as a Function of Temperature, Residence Time, and Solvent System in Flow-through Reactors.
ACS Sustain Chem Eng. 2025 Aug 1;13(31):12573-12582. doi: 10.1021/acssuschemeng.5c04198. eCollection 2025 Aug 11.
5
Cooperative Lewis Acid/Metal Dual Catalysis for the Selective -Alkylation of Phenols.
ACS Sustain Chem Eng. 2025 Jul 25;13(30):12220-12231. doi: 10.1021/acssuschemeng.5c04668. eCollection 2025 Aug 4.
7
Tailored Lignin Fractions via Ionic Liquid Pretreatment for Sustainable Polymer Systems.
Molecules. 2025 Jun 17;30(12):2630. doi: 10.3390/molecules30122630.
8
Modular synthetic routes to biologically active indoles from lignin.
Green Chem. 2025 Jun 10;27(25):7506-7512. doi: 10.1039/d5gc01003a. eCollection 2025 Jun 23.
10
Laccase-catalyzed conversion of residual agricultural biomass to lignin-derived aromatic compounds.
World J Microbiol Biotechnol. 2025 Jun 11;41(6):197. doi: 10.1007/s11274-025-04440-5.

本文引用的文献

1
Nickel-catalyzed amination of aryl carbamates and sequential site-selective cross-couplings.
Chem Sci. 2011 Sep 1;2(9):1766-1771. doi: 10.1039/c1sc00230a. Epub 2011 Jun 9.
2
The promise of plastics from plants.
Science. 2017 Nov 17;358(6365):868-870. doi: 10.1126/science.aao6711.
3
Catalysis as an Enabling Science for Sustainable Polymers.
Chem Rev. 2018 Jan 24;118(2):839-885. doi: 10.1021/acs.chemrev.7b00329. Epub 2017 Oct 19.
5
Redox Catalysis Facilitates Lignin Depolymerization.
ACS Cent Sci. 2017 Jun 28;3(6):621-628. doi: 10.1021/acscentsci.7b00140. Epub 2017 Jun 7.
6
Biobased Epoxy Resins from Deconstructed Native Softwood Lignin.
Biomacromolecules. 2017 Aug 14;18(8):2640-2648. doi: 10.1021/acs.biomac.7b00767. Epub 2017 Jul 18.
8
Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.
Bioresour Technol. 2017 Oct;241:1118-1126. doi: 10.1016/j.biortech.2017.05.129. Epub 2017 May 21.
9
Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals.
ChemSusChem. 2017 Jun 22;10(12):2547-2559. doi: 10.1002/cssc.201700597. Epub 2017 Jun 8.
10
Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization.
ChemSusChem. 2017 May 22;10(10):2111-2115. doi: 10.1002/cssc.201700436. Epub 2017 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验