Rosetto Gloria, Chism Katherine A, Cardinale Luana, Lazarenko Daria, Curley Julia B, Wernke Kevin M, Hamernik Levi J, Lincoln Clarissa, Haugen Stefan J, Ramirez Kelsey J, Konev Mikhail O, Liu Xuan, Knott Brandon C, Rorrer Nicholas A, Stahl Shannon S, Beckham Gregg T
Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, WI 53706, United States.
ACS Sustain Chem Eng. 2025 May 5;13(17):6342-6354. doi: 10.1021/acssuschemeng.5c01330. Epub 2025 Apr 22.
Lignin-derived aromatic carboxylic acids can be produced from oxidative catalytic processes and are promising building blocks for performance-advantaged bioproducts that leverage their inherent heteroatom functionalities. Here, we synthesize 2-methoxyterephthalate and 2,6-dimethoxyterephthalate derivatives by electrochemical carboxylation of guaiacyl- and syringyl-derived lignin monomers obtained from the oxidative deconstruction of lignin. These methoxylated terephthalates are evaluated as co-monomers in poly(ethylene terephthalate) (PET) and as plasticizers that could replace petrochemically-derived isophthalate and phthalate, respectively. Specifically, we co-polymerize 2-methoxy- and 2,6-dimethoxyterephthalate with dimethyl terephthalate to form several PET co-polymers, both of which enable the properties of PET to be tuned, with an incorporation beyond 25% producing amorphous polyesters. At 10 mol% loading in the co-polymers, we demonstrate that the bio-derived co-monomers exhibit comparable behavior to isophthalic acid, a commonly used co-monomer in PET, by lowering the crystallinity and melting temperature. Moreover, methoxyterephthalate esters (2-ethyl hexyl and butyl) are compared to phthalate and terephthalate ester counterparts used as poly(vinyl chloride) (PVC) plasticizers. The bio-derived plasticizers are comparable to the petroleum-derived incumbents in reducing the glass transition temperature and increasing the thermal stability of PVC. Furthermore, the dimethoxyterephthalic esters are expected to have an extended lifetime in the polymer matrix, due to their lower volatility and by lower diffusion coefficients calculated by molecular dynamic simulations. These results demonstrate that the isophthalate and phthalate components in polyesters and plasticizers, respectively, could be substituted with bio-based methoxyterephthalate derivatives.
木质素衍生的芳香族羧酸可通过氧化催化过程制备,是具有性能优势的生物产品的有前景的构建模块,这些生物产品利用了其固有的杂原子官能团。在此,我们通过对从木质素氧化解构中获得的愈创木基和紫丁香基衍生的木质素单体进行电化学羧化反应,合成了2-甲氧基对苯二甲酸酯和2,6-二甲氧基对苯二甲酸酯衍生物。这些甲氧基化对苯二甲酸酯被评估为聚对苯二甲酸乙二酯(PET)中的共聚单体,以及分别可替代石化衍生的间苯二甲酸酯和邻苯二甲酸酯的增塑剂。具体而言,我们将2-甲氧基对苯二甲酸酯和2,6-二甲氧基对苯二甲酸酯与对苯二甲酸二甲酯共聚以形成几种PET共聚物,两者都能调节PET的性能,当掺入量超过25%时会产生无定形聚酯。在共聚物中负载量为10 mol%时,我们证明生物衍生的共聚单体通过降低结晶度和熔点,表现出与PET中常用共聚单体间苯二甲酸类似的行为。此外,将甲氧基对苯二甲酸酯(2-乙基己酯和丁酯)与用作聚氯乙烯(PVC)增塑剂的邻苯二甲酸酯和对苯二甲酸酯对应物进行了比较。生物衍生的增塑剂在降低玻璃化转变温度和提高PVC的热稳定性方面与石油衍生的同类产品相当。此外,由于二甲氧基对苯二甲酸酯的挥发性较低且通过分子动力学模拟计算出的扩散系数较低,预计它们在聚合物基体中的寿命会延长。这些结果表明,聚酯和增塑剂中的间苯二甲酸酯和邻苯二甲酸酯成分可分别被生物基甲氧基对苯二甲酸酯衍生物替代。