Suppr超能文献

基于社交激励机制的移动群智感知协作频谱感知中的多用户感知时间优化

Social Incentive Mechanism Based Multi-User Sensing Time Optimization in Co-Operative Spectrum Sensing with Mobile Crowd Sensing.

作者信息

Li Xiaohui, Zhu Qi

机构信息

Key Wireless Laboratory of Jiangsu Province, School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

Sensors (Basel). 2018 Jan 16;18(1):250. doi: 10.3390/s18010250.

Abstract

Co-operative spectrum sensing emerging as a significant method to improve the utilization of the spectrum needs sufficient sensing users to participate. Existing related papers consider only the limited secondary users in current sensing system and assume that they will always perform the co-operative spectrum sensing out of obligation. However, this assumption is impractical in the realistic situation where the secondary users are rational and they will not join in the co-operative sensing process without a certain reward to compensate their sensing energy consumption, especially the ones who have no data transmitting in current time slot. To solve this problem, we take advantage of the mobile crowd sensing to supply adequate co-operative sensing candidates, in which the sensing users are not only the secondary users but also a crowd of widely distributed mobile users equipped with personal spectrum sensors (such as smartphones, vehicle sensors). Furthermore, a social incentive mechanism is also adapted to motivate the participations of mobile sensing users. In this paper, we model the interactions among the motivated sensing users as a co-operative game where they adjust their own sensing time strategies to maximize the co-operative sensing utility, which eventually guarantees the detection performance and prevents the global sensing cost being too high. We prove that the game based optimization problem is NP-hard and exists a unique optimal equilibrium. An improved differential evolution algorithm is proposed to solve the optimization problem. Simulation results prove the better performance in our proposed multi-user sensing time optimization model and the proposed improved differential evolution algorithm, respectively compared with the non-optimization model and the other two typical equilibrium solution algorithms.

摘要

协作频谱感知作为一种提高频谱利用率的重要方法,需要足够的感知用户参与。现有相关论文仅考虑当前感知系统中有限的次级用户,并假设它们将始终出于义务进行协作频谱感知。然而,在现实情况下,这种假设是不切实际的,因为次级用户是理性的,并且在没有一定奖励来补偿其感知能量消耗的情况下,他们不会参与协作感知过程,尤其是那些在当前时隙没有数据传输的用户。为了解决这个问题,我们利用移动人群感知来提供足够的协作感知候选者,其中感知用户不仅是次级用户,而且是一群广泛分布的配备个人频谱传感器(如智能手机、车辆传感器)的移动用户。此外,还采用了一种社会激励机制来激励移动感知用户的参与。在本文中,我们将有动机的感知用户之间的交互建模为一个协作博弈,在这个博弈中,他们调整自己的感知时间策略以最大化协作感知效用,最终保证检测性能并防止全局感知成本过高。我们证明基于博弈的优化问题是NP难的,并且存在唯一的最优均衡。提出了一种改进的差分进化算法来解决该优化问题。仿真结果分别证明了我们提出的多用户感知时间优化模型和提出的改进差分进化算法与非优化模型和其他两种典型均衡求解算法相比具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16be/5795873/0af14ca09920/sensors-18-00250-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验