Suppr超能文献

基于瓦尔拉斯均衡的移动众包指纹定位激励机制

Walrasian Equilibrium-Based Incentive Scheme for Mobile Crowdsourcing Fingerprint Localization.

作者信息

Yu Tao, Gui Linqing, Yu Tianxin, Wang Jilong

机构信息

Institute of Network Science and Cyberspace, Tsinghua University, Beijing 100084, China.

Department of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Sensors (Basel). 2019 Jun 14;19(12):2693. doi: 10.3390/s19122693.

Abstract

Mobile crowdsourcing has been exploited to collect enough fingerprints for fingerprinting-based localization. Since the construction of a fingerprint database is time consuming, mobile users should be well motivated to participate in fingerprint collection task. To this end, a Walrasian equilibrium-based incentive mechanism is proposed in this paper to motivate mobile users. The proposed mechanism can eliminate the monopoly of the crowdsourcer, balance the supply and demand of fingerprint data, and maximize the benefit of all participators. In order to reach the Walrasian equilibrium, firstly, the social welfare maximization problem is constructed. To solve the original optimization problem, a dual decomposition method is employed. The maximization of social welfare is decomposed into the triple benefit optimization among the crowdsourcer, mobile users, and the whole system. Accordingly, a distributed iterative algorithm is designed. Through the simulation, the performance of the proposed incentive scheme is verified and analyzed. Simulation results demonstrated that the proposed iterative algorithm satisfies the convergence and optimality. Moreover, the self-reconstruction ability of the proposed incentive scheme was also verified, indicating that the system has strong robustness and scalability.

摘要

移动众包已被用于收集足够的指纹以进行基于指纹的定位。由于构建指纹数据库耗时,因此应充分激励移动用户参与指纹收集任务。为此,本文提出了一种基于瓦尔拉斯均衡的激励机制来激励移动用户。所提出的机制可以消除众包商的垄断,平衡指纹数据的供需,并使所有参与者的利益最大化。为了达到瓦尔拉斯均衡,首先构建社会福利最大化问题。为了解决原始优化问题,采用了对偶分解方法。社会福利最大化被分解为众包商、移动用户和整个系统之间的三重效益优化。相应地,设计了一种分布式迭代算法。通过仿真,对所提出的激励方案的性能进行了验证和分析。仿真结果表明,所提出的迭代算法满足收敛性和最优性。此外,还验证了所提出的激励方案的自我重构能力,表明该系统具有很强的鲁棒性和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8479/6631505/da18464d432a/sensors-19-02693-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验