Suppr超能文献

利用白鲸(白鲸属 白鲸(帕拉斯,1776年))牙齿牙本质中的每日增量生长线验证生长层组(GLG)沉积速率。

Validation of Growth Layer Group (GLG) depositional rate using daily incremental growth lines in the dentin of beluga (Delphinapterus leucas (Pallas, 1776)) teeth.

作者信息

Waugh David A, Suydam Robert S, Ortiz Joseph D, Thewissen J G M

机构信息

Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America.

North Slope Borough, Department of Wildlife Management, Barrow, Alaska, United States of America.

出版信息

PLoS One. 2018 Jan 16;13(1):e0190498. doi: 10.1371/journal.pone.0190498. eCollection 2018.

Abstract

Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa.

摘要

海洋哺乳动物牙齿牙本质中生长层组(GLGs)的计数被广泛用作年龄指标。在大多数海洋哺乳动物中,观察记录表明GLGs是每年沉积的,但在白鲸中,一些研究支持每年沉积两个GLGs的观点。我们对白鲸生活史的理解在很大程度上取决于关于GLG沉积时间的假设;因此,解决这个问题对种群评估具有重要意义。在本研究中,我们使用代表牙本质矿化每日脉冲的增量线来检验白鲸牙本质中GLGs每年沉积的假设。我们对一个GLG内每日生长线数量的估计在误差范围内非常接近365天,支持了白鲸中GLGs每年沉积的假设。我们表明,每日生长增量的测量可用于验证白鲸中GLGs所代表的时间。此外,我们认为这种方法可能在其他分类群的年龄估计中有更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d336/5770016/4ad70c925553/pone.0190498.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验