Suppr超能文献

区分情绪困扰中的共同方差与独特方差:可靠性及其与担忧关系的检验

Separating Common from Unique Variance Within Emotional Distress: An Examination of Reliability and Relations to Worry.

作者信息

Marshall Andrew J, Evanovich Emma K, David Sarah Jo, Mumma Gregory H

机构信息

Department of Psychological Sciences,Texas Tech University.

出版信息

Behav Cogn Psychother. 2018 Sep;46(5):633-638. doi: 10.1017/S1352465817000777. Epub 2018 Jan 17.

Abstract

BACKGROUND

High comorbidity rates among emotional disorders have led researchers to examine transdiagnostic factors that may contribute to shared psychopathology. Bifactor models provide a unique method for examining transdiagnostic variables by modelling the common and unique factors within measures. Previous findings suggest that the bifactor model of the Depression Anxiety and Stress Scale (DASS) may provide a method for examining transdiagnostic factors within emotional disorders.

AIMS

This study aimed to replicate the bifactor model of the DASS, a multidimensional measure of psychological distress, within a US adult sample and provide initial estimates of the reliability of the general and domain-specific factors. Furthermore, this study hypothesized that Worry, a theorized transdiagnostic variable, would show stronger relations to general emotional distress than domain-specific subscales.

METHOD

Confirmatory factor analysis was used to evaluate the bifactor model structure of the DASS in 456 US adult participants (279 females and 177 males, mean age 35.9 years) recruited online.

RESULTS

The DASS bifactor model fitted well (CFI = 0.98; RMSEA = 0.05). The General Emotional Distress factor accounted for most of the reliable variance in item scores. Domain-specific subscales accounted for modest portions of reliable variance in items after accounting for the general scale. Finally, structural equation modelling indicated that Worry was strongly predicted by the General Emotional Distress factor.

CONCLUSIONS

The DASS bifactor model is generalizable to a US community sample and General Emotional Distress, but not domain-specific factors, strongly predict the transdiagnostic variable Worry.

摘要

背景

情绪障碍的高共病率促使研究人员去探究可能导致共同精神病理学的跨诊断因素。双因素模型通过对测量中的共同因素和独特因素进行建模,提供了一种独特的方法来研究跨诊断变量。先前的研究结果表明,抑郁焦虑压力量表(DASS)的双因素模型可能为研究情绪障碍中的跨诊断因素提供一种方法。

目的

本研究旨在在美国成年人样本中复制DASS的双因素模型(一种心理困扰的多维测量工具),并对一般因素和特定领域因素的信度进行初步估计。此外,本研究假设,担忧这一理论上的跨诊断变量与一般情绪困扰的关系比与特定领域子量表的关系更强。

方法

采用验证性因素分析来评估在线招募的456名美国成年参与者(279名女性和177名男性,平均年龄35.9岁)中DASS的双因素模型结构。

结果

DASS双因素模型拟合良好(CFI = 0.98;RMSEA = 0.05)。一般情绪困扰因素占项目得分中大部分可靠方差。在考虑了总量表之后,特定领域子量表占项目可靠方差的比例适中。最后,结构方程模型表明,一般情绪困扰因素能强烈预测担忧。

结论

DASS双因素模型可推广到美国社区样本,并且一般情绪困扰而非特定领域因素能强烈预测跨诊断变量担忧。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验