Suppr超能文献

从大脑功能连接预测个体的创造力

Robust prediction of individual creative ability from brain functional connectivity.

机构信息

Department of Psychology, Harvard University, Cambridge, MA 02143;

Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1087-1092. doi: 10.1073/pnas.1713532115. Epub 2018 Jan 16.

Abstract

People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.

摘要

人们的创造性思维能力是技术和文化进步的主要手段,但高度创造性大脑的神经结构在很大程度上仍未得到定义。在这里,我们使用了功能磁共振成像 (fMRI) 数据分析中的一种新方法——连接组预测建模,来识别与高创造性能力相关的大脑网络,该方法基于从 163 名参与经典发散思维任务的参与者那里获得的 fMRI 数据。在行为层面上,我们发现创造性思维能力与自我报告的艺术和科学领域的创造性行为和成就之间存在很强的相关性 ( = 0.54)。在神经层面上,我们发现了一种与高创造性思维能力相关的大脑连接模式,该模式由默认、突显和执行大脑系统中的额区和顶区组成。在一次逐个排除的交叉验证分析中,我们表明该神经模型可以可靠地预测样本中新参与者产生的创意的质量。此外,在使用来自两个独立任务 fMRI 样本和一个大型任务无关静息态 fMRI 样本的数据的一系列外部验证分析中,我们从相同的大脑连接模式中展示了对个体创造性思维能力的稳健预测。因此,这些发现揭示了一个与高创造性能力相关的全脑网络,该网络由默认、突显和执行系统中的皮质中枢组成——内在的功能网络往往相互对立——这表明高度创造性的人具有同时参与这些大规模大脑网络的能力。

相似文献

1
Robust prediction of individual creative ability from brain functional connectivity.从大脑功能连接预测个体的创造力
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1087-1092. doi: 10.1073/pnas.1713532115. Epub 2018 Jan 16.
6
Brain networks underlying novel metaphor production.产生新颖隐喻的脑网络。
Brain Cogn. 2017 Feb;111:163-170. doi: 10.1016/j.bandc.2016.12.004. Epub 2016 Dec 28.
8
Intelligence and creativity share a common cognitive and neural basis.智力和创造力具有共同的认知和神经基础。
J Exp Psychol Gen. 2021 Apr;150(4):609-632. doi: 10.1037/xge0000958. Epub 2020 Oct 29.
10
Connectome-Based Predictive Modeling of Creativity Anxiety.基于连接组学的创造力焦虑预测模型
Neuroimage. 2021 Jan 15;225:117469. doi: 10.1016/j.neuroimage.2020.117469. Epub 2020 Oct 21.

引用本文的文献

10
Irrationality in humans and creativity in AI.人类的非理性与人工智能的创造力。
Front Artif Intell. 2025 Jun 20;8:1579704. doi: 10.3389/frai.2025.1579704. eCollection 2025.

本文引用的文献

1
Default mode contributions to automated information processing.默认模式对自动化信息处理的贡献。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12821-12826. doi: 10.1073/pnas.1710521114. Epub 2017 Oct 23.
3
Characterizing Attention with Predictive Network Models.用预测网络模型表征注意力。
Trends Cogn Sci. 2017 Apr;21(4):290-302. doi: 10.1016/j.tics.2017.01.011. Epub 2017 Feb 23.
7
Dynamic network interactions supporting internally-oriented cognition.支持内导向认知的动态网络交互。
Curr Opin Neurobiol. 2016 Oct;40:86-93. doi: 10.1016/j.conb.2016.06.014. Epub 2016 Jul 13.
9
Creative Cognition and Brain Network Dynamics.创造性认知与脑网络动力学
Trends Cogn Sci. 2016 Feb;20(2):87-95. doi: 10.1016/j.tics.2015.10.004. Epub 2015 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验