Suppr超能文献

人工智能探索不稳定原细胞可导致可预测的特性和集体行为的发现。

Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior.

机构信息

WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.

WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):885-890. doi: 10.1073/pnas.1711089115. Epub 2018 Jan 16.

Abstract

Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.

摘要

原核细胞模型用于研究细胞最初是如何在地球上组装的。有些原核细胞模型,如油包水液滴,看似简单,但却能表现出复杂和不可预测的行为。如此简单的油包水体系如何能够聚集在一起产生复杂的、类似生命的行为仍然是一个关键问题。在这里,我们展示了自动化实验和图像处理、物理化学分析和机器学习的结合如何能够在理解油包水液滴行为背后的驱动力方面取得重大进展。利用自主机器人平台收集的超过 7000 次实验,我们说明了智能自动化不仅有助于探索、优化和发现新的行为,而且可以成为开发对这类系统的基本理解的核心。通过这个过程,我们能够通过预测的物理性质将液滴配方与行为联系起来,并识别和预测罕见的集体液滴行为——液滴群集的更多发生。质子 NMR 光谱和定性 pH 方法使我们能够更好地理解油的溶解、化学变化、相转变以及液滴和水相的流动,展示了智能自动化和传统分析化学技术相结合的实用性。我们进一步扩展了我们的研究,使用机器人平台同时探索油相和水相。总的来说,这项工作表明,化学、机器人技术和人工智能的结合能够以单一方法无法实现的方式发现、预测和理解机制。

相似文献

1
Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior.
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):885-890. doi: 10.1073/pnas.1711089115. Epub 2018 Jan 16.
2
Role of Artificial Intelligence and Machine Learning in Nanosafety.
Small. 2020 Sep;16(36):e2001883. doi: 10.1002/smll.202001883. Epub 2020 Jun 15.
3
A curious formulation robot enables the discovery of a novel protocell behavior.
Sci Adv. 2020 Jan 31;6(5):eaay4237. doi: 10.1126/sciadv.aay4237. eCollection 2020 Jan.
4
Droplets in underlying chemical communication recreate cell interaction behaviors.
Nat Commun. 2022 Jun 1;13(1):3047. doi: 10.1038/s41467-022-30834-2.
5
Automation, machine learning, and artificial intelligence in echocardiography: A brave new world.
Echocardiography. 2018 Sep;35(9):1402-1418. doi: 10.1111/echo.14086. Epub 2018 Jul 5.
6
Toward autonomous design and synthesis of novel inorganic materials.
Mater Horiz. 2021 Aug 1;8(8):2169-2198. doi: 10.1039/d1mh00495f. Epub 2021 May 26.
7
Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization.
Chem Rev. 2022 Aug 10;122(15):13006-13042. doi: 10.1021/acs.chemrev.2c00141. Epub 2022 Jun 27.
8
Dentronics: Towards robotics and artificial intelligence in dentistry.
Dent Mater. 2020 Jun;36(6):765-778. doi: 10.1016/j.dental.2020.03.021. Epub 2020 Apr 27.
9
Autonomous model protocell division driven by molecular replication.
Nat Commun. 2017 Aug 10;8(1):237. doi: 10.1038/s41467-017-00177-4.
10
Intelligent software for laboratory automation.
Trends Biotechnol. 2004 Sep;22(9):440-5. doi: 10.1016/j.tibtech.2004.07.010.

引用本文的文献

1
Robotic Modules for the Programmable Chemputation of Molecules and Materials.
ACS Cent Sci. 2023 Jul 26;9(8):1525-1537. doi: 10.1021/acscentsci.3c00304. eCollection 2023 Aug 23.
2
Construction of Supramolecular Systems That Achieve Lifelike Functions.
Materials (Basel). 2022 Mar 24;15(7):2391. doi: 10.3390/ma15072391.
4
Informational architecture across non-living and living collectives.
Theory Biosci. 2021 Nov;140(4):325-341. doi: 10.1007/s12064-020-00331-5. Epub 2021 Feb 2.
5
Emergence and Rearrangement of Dynamic Supramolecular Aggregates Visualized by Interferometric Scattering Microscopy.
ACS Nano. 2020 Sep 22;14(9):11160-11168. doi: 10.1021/acsnano.0c02414. Epub 2020 Aug 18.
6
A curious formulation robot enables the discovery of a novel protocell behavior.
Sci Adv. 2020 Jan 31;6(5):eaay4237. doi: 10.1126/sciadv.aay4237. eCollection 2020 Jan.
8
DNA-based communication in populations of synthetic protocells.
Nat Nanotechnol. 2019 Apr;14(4):369-378. doi: 10.1038/s41565-019-0399-9. Epub 2019 Mar 4.
9
Toward Experimental Evolution with Giant Vesicles.
Life (Basel). 2018 Oct 31;8(4):53. doi: 10.3390/life8040053.
10
Designing Algorithms To Aid Discovery by Chemical Robots.
ACS Cent Sci. 2018 Jul 25;4(7):793-804. doi: 10.1021/acscentsci.8b00176. Epub 2018 Jul 3.

本文引用的文献

1
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
Chem Sci. 2017 Apr 1;8(4):3192-3203. doi: 10.1039/c6sc05720a. Epub 2017 Feb 8.
2
Predatory behaviour in synthetic protocell communities.
Nat Chem. 2017 Feb;9(2):110-119. doi: 10.1038/nchem.2617. Epub 2016 Oct 3.
3
Solving the quantum many-body problem with artificial neural networks.
Science. 2017 Feb 10;355(6325):602-606. doi: 10.1126/science.aag2302.
4
Visualization of the spontaneous emergence of a complex, dynamic, and autocatalytic system.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11122-11126. doi: 10.1073/pnas.1602363113. Epub 2016 Sep 16.
5
Tactic, reactive, and functional droplets outside of equilibrium.
Chem Soc Rev. 2016 Aug 22;45(17):4766-96. doi: 10.1039/c6cs00242k.
6
A Synthetic Replicator Drives a Propagating Reaction-Diffusion Front.
J Am Chem Soc. 2016 Jun 1;138(21):6723-6. doi: 10.1021/jacs.6b03372. Epub 2016 May 20.
7
Machine-learning-assisted materials discovery using failed experiments.
Nature. 2016 May 5;533(7601):73-6. doi: 10.1038/nature17439.
8
A simple physical mechanism enables homeostasis in primitive cells.
Nat Chem. 2016 May;8(5):448-53. doi: 10.1038/nchem.2475. Epub 2016 Mar 14.
9
Machine learning: Trends, perspectives, and prospects.
Science. 2015 Jul 17;349(6245):255-60. doi: 10.1126/science.aaa8415.
10
From Chemical Gardens to Chemobrionics.
Chem Rev. 2015 Aug 26;115(16):8652-703. doi: 10.1021/acs.chemrev.5b00014. Epub 2015 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验