WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):885-890. doi: 10.1073/pnas.1711089115. Epub 2018 Jan 16.
Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.
原核细胞模型用于研究细胞最初是如何在地球上组装的。有些原核细胞模型,如油包水液滴,看似简单,但却能表现出复杂和不可预测的行为。如此简单的油包水体系如何能够聚集在一起产生复杂的、类似生命的行为仍然是一个关键问题。在这里,我们展示了自动化实验和图像处理、物理化学分析和机器学习的结合如何能够在理解油包水液滴行为背后的驱动力方面取得重大进展。利用自主机器人平台收集的超过 7000 次实验,我们说明了智能自动化不仅有助于探索、优化和发现新的行为,而且可以成为开发对这类系统的基本理解的核心。通过这个过程,我们能够通过预测的物理性质将液滴配方与行为联系起来,并识别和预测罕见的集体液滴行为——液滴群集的更多发生。质子 NMR 光谱和定性 pH 方法使我们能够更好地理解油的溶解、化学变化、相转变以及液滴和水相的流动,展示了智能自动化和传统分析化学技术相结合的实用性。我们进一步扩展了我们的研究,使用机器人平台同时探索油相和水相。总的来说,这项工作表明,化学、机器人技术和人工智能的结合能够以单一方法无法实现的方式发现、预测和理解机制。