Suppr超能文献

一个奇特的配方机器人促成了一种新型原始细胞行为的发现。

A curious formulation robot enables the discovery of a novel protocell behavior.

作者信息

Grizou Jonathan, Points Laurie J, Sharma Abhishek, Cronin Leroy

机构信息

School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK.

出版信息

Sci Adv. 2020 Jan 31;6(5):eaay4237. doi: 10.1126/sciadv.aay4237. eCollection 2020 Jan.

Abstract

We describe a chemical robotic assistant equipped with a curiosity algorithm (CA) that can efficiently explore the states a complex chemical system can exhibit. The CA-robot is designed to explore formulations in an open-ended way with no explicit optimization target. By applying the CA-robot to the study of self-propelling multicomponent oil-in-water protocell droplets, we are able to observe an order of magnitude more variety in droplet behaviors than possible with a random parameter search and given the same budget. We demonstrate that the CA-robot enabled the observation of a sudden and highly specific response of droplets to slight temperature changes. Six modes of self-propelled droplet motion were identified and classified using a time-temperature phase diagram and probed using a variety of techniques including NMR. This work illustrates how CAs can make better use of a limited experimental budget and significantly increase the rate of unpredictable observations, leading to new discoveries with potential applications in formulation chemistry.

摘要

我们描述了一种配备好奇算法(CA)的化学机器人助手,它能够有效地探索复杂化学系统可能呈现的状态。该CA机器人旨在以开放式方式探索配方,没有明确的优化目标。通过将CA机器人应用于自推进多组分水包油原细胞液滴的研究,在相同预算下,我们能够观察到比随机参数搜索更多一个数量级的液滴行为变化。我们证明,CA机器人能够观察到液滴对微小温度变化的突然且高度特异性的反应。利用时间-温度相图识别并分类了六种自推进液滴运动模式,并使用包括核磁共振(NMR)在内的多种技术进行了探测。这项工作说明了好奇算法如何能更好地利用有限的实验预算,并显著提高不可预测观察的速率,从而在配方化学中带来具有潜在应用价值的新发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f85/6994213/92f3b750fd48/aay4237-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验