Suppr超能文献

动态 PET 图像重建,整合与呼吸运动校正相关的时间正则化,应用于肿瘤学。

Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology.

机构信息

INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, CHRU de Brest, Brest, France.

出版信息

Phys Med Biol. 2018 Feb 13;63(4):045012. doi: 10.1088/1361-6560/aaa86a.

Abstract

Respiratory motion reduces both the qualitative and quantitative accuracy of PET images in oncology. This impact is more significant for quantitative applications based on kinetic modeling, where dynamic acquisitions are associated with limited statistics due to the necessity of enhanced temporal resolution. The aim of this study is to address these drawbacks, by combining a respiratory motion correction approach with temporal regularization in a unique reconstruction algorithm for dynamic PET imaging. Elastic transformation parameters for the motion correction are estimated from the non-attenuation-corrected PET images. The derived displacement matrices are subsequently used in a list-mode based OSEM reconstruction algorithm integrating a temporal regularization between the 3D dynamic PET frames, based on temporal basis functions. These functions are simultaneously estimated at each iteration, along with their relative coefficients for each image voxel. Quantitative evaluation has been performed using dynamic FDG PET/CT acquisitions of lung cancer patients acquired on a GE DRX system. The performance of the proposed method is compared with that of a standard multi-frame OSEM reconstruction algorithm. The proposed method achieved substantial improvements in terms of noise reduction while accounting for loss of contrast due to respiratory motion. Results on simulated data showed that the proposed 4D algorithms led to bias reduction values up to 40% in both tumor and blood regions for similar standard deviation levels, in comparison with a standard 3D reconstruction. Patlak parameter estimations on reconstructed images with the proposed reconstruction methods resulted in 30% and 40% bias reduction in the tumor and lung region respectively for the Patlak slope, and a 30% bias reduction for the intercept in the tumor region (a similar Patlak intercept was achieved in the lung area). Incorporation of the respiratory motion correction using an elastic model along with a temporal regularization in the reconstruction process of the PET dynamic series led to substantial quantitative improvements and motion artifact reduction. Future work will include the integration of a linear FDG kinetic model, in order to directly reconstruct parametric images.

摘要

呼吸运动降低了肿瘤学中 PET 图像的定性和定量准确性。对于基于动力学建模的定量应用,这种影响更为显著,因为动态采集由于需要增强时间分辨率而与有限的统计数据相关。本研究的目的是通过在动态 PET 成像的独特重建算法中结合呼吸运动校正方法和时间正则化来解决这些缺点。运动校正的弹性变换参数是从未衰减校正的 PET 图像中估计的。随后,将导出的位移矩阵用于基于列表模式的 OSEM 重建算法中,该算法基于时间基函数,在 3D 动态 PET 帧之间进行时间正则化。这些函数在每次迭代时都会同时进行估计,以及它们在每个图像体素中的相对系数。使用在 GE DRX 系统上获取的肺癌患者的动态 FDG PET/CT 采集进行了定量评估。将所提出的方法的性能与标准的多帧 OSEM 重建算法进行了比较。所提出的方法在考虑呼吸运动引起的对比度损失的同时,在降噪方面取得了实质性的改进。在模拟数据上的结果表明,与标准的 3D 重建相比,所提出的 4D 算法导致肿瘤和血液区域的偏差减少值高达 40%,对于类似的标准偏差水平。在所提出的重建方法的重建图像上进行 Patlak 参数估计,导致肿瘤和肺区域的 Patlak 斜率分别减少 30%和 40%,肿瘤区域的截距减少 30%(在肺区域中实现了类似的 Patlak 截距)。在 PET 动态序列的重建过程中,使用弹性模型结合时间正则化进行呼吸运动校正的引入导致了实质性的定量改进和运动伪影减少。未来的工作将包括整合线性 FDG 动力学模型,以便直接重建参数图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验