Suppr超能文献

21 世纪 20 年代的定量 PET:路线图。

Quantitative PET in the 2020s: a roadmap.

机构信息

Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia.

Brain and Mind Centre, The University of Sydney, Australia.

出版信息

Phys Med Biol. 2021 Mar 12;66(6):06RM01. doi: 10.1088/1361-6560/abd4f7.

Abstract

Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.

摘要

正电子发射断层扫描(PET)在研究和临床应用中发挥着越来越重要的作用,这得益于显著的技术进步和对健康和疾病中人脑功能可靠、敏感生物标志物的需求不断增长。在过去的 30 年中,大量的 PET 物理和工程工作都受到了当时占主导地位的临床应用——肿瘤学的推动。这导致了 PET/CT、全身 PET、3D PET、加速统计图像重建和飞行时间 PET 等重要发展。尽管由于这些进步,图像质量有了显著提高,但由于强调肿瘤学应用的静态、半定量“热点”成像,PET 基于示踪剂动力学定量生物相关参数的能力尚未得到充分利用。最近的进展,如 PET/MR 和全身 PET,使人们能够解决从大量新的研究问题,从这些新的应用和示踪剂的未来扩张似乎非常可能。其中许多新的应用和示踪剂至少在最初阶段将需要更充分地利用 PET 的灵敏度和基于示踪剂原理的定量分析,这也需要比目前可用的更复杂的定量分析方法。与此同时,人工智能正在彻底改变数据分析,并影响我们可以从数据中提取的信息与所获取数据的统计质量之间的关系。在这份路线图中,该领域的主要子学科的领导者确定了未来十年需要解决的挑战和机遇,这将使 PET 能够充分发挥其定量潜力,最初是在研究实验室,最终是在临床实践中。

相似文献

1
Quantitative PET in the 2020s: a roadmap.21 世纪 20 年代的定量 PET:路线图。
Phys Med Biol. 2021 Mar 12;66(6):06RM01. doi: 10.1088/1361-6560/abd4f7.
6
Deep learning for whole-body medical image generation.深度学习在全身医学图像生成中的应用。
Eur J Nucl Med Mol Imaging. 2021 Nov;48(12):3817-3826. doi: 10.1007/s00259-021-05413-0. Epub 2021 May 22.
8
Novel Quantitative PET Techniques for Clinical Decision Support in Oncology.新型定量 PET 技术在肿瘤学临床决策支持中的应用。
Semin Nucl Med. 2018 Nov;48(6):548-564. doi: 10.1053/j.semnuclmed.2018.07.003. Epub 2018 Sep 10.
10
Roadmap toward the 10 ps time-of-flight PET challenge.迈向 10 ps 飞行时间 PET 挑战的路线图。
Phys Med Biol. 2020 Oct 22;65(21):21RM01. doi: 10.1088/1361-6560/ab9500.

引用本文的文献

10
A Methodology to Measure Glucose Metabolism by Quantitative Analysis of PET Images.一种通过PET图像定量分析测量葡萄糖代谢的方法。
J Healthc Inform Res. 2024 Sep 25;8(4):640-657. doi: 10.1007/s41666-024-00172-7. eCollection 2024 Dec.

本文引用的文献

3
Roadmap toward the 10 ps time-of-flight PET challenge.迈向 10 ps 飞行时间 PET 挑战的路线图。
Phys Med Biol. 2020 Oct 22;65(21):21RM01. doi: 10.1088/1361-6560/ab9500.
6
Nuclear Imaging of Neuroendocrine Tumors.神经内分泌肿瘤的核成像
Surg Oncol Clin N Am. 2020 Apr;29(2):209-221. doi: 10.1016/j.soc.2019.11.007.
8
PET image super-resolution using generative adversarial networks.基于生成对抗网络的 PET 图像超分辨率技术
Neural Netw. 2020 May;125:83-91. doi: 10.1016/j.neunet.2020.01.029. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验