Suppr超能文献

Cell type dependent inhibition of transport of cathepsin D in HepG2 cells and fibroblasts exposed to deoxy-manno-nojirimycin and deoxynojirimycin.

作者信息

Nauerth A, Lemansky P, Hasilik A, von Figura K, Bause E, Legler G

出版信息

Biol Chem Hoppe Seyler. 1985 Nov;366(11):1009-16. doi: 10.1515/bchm3.1985.366.2.1009.

Abstract

The synthesis, transport and processing of lysosomal enzymes was examined in human hepatoma HepG2 cells and in human fibroblasts exposed to the Golgi alpha-mannosidase I inhibitor 1-deoxy-manno-nojirimycin. In HepG2 cells cathepsin D, beta-hexosaminidase and arylsulfatase B synthesized in the presence of 5 mM 1-deoxy-manno-nojirimycin contained exclusively endo-beta-N-acetylglucosaminidase H-cleavable oligosaccharides, indicating that alpha-mannosidase I had been inhibited efficiently. The proteolytic processing of intracellularly retained cathepsin D was retarded and the fraction of secreted cathepsin D was increased two-fold. In fibroblasts neither segregation nor maturation of cathepsin D were affected by 1-deoxy-manno-nojirimycin in spite of the inhibition of oligosaccharide processing. In the presence of the glucosidase I inhibitor 1-deoxynojirimycin, the precursor of cathepsin D (larger by about 1 kDa than the secreted form) accumulated transiently in light membranes in HepG2 cells. Release from the site of accumulation was accompanied by a decrease in size by about 1 kDa. This change was attributed to the removal of glucose residues. In fibroblasts the transient accumulation of larger precursors in the presence of 1-deoxynojirimycin was more pronounced than in HepG2 cells. The differential effects of alpha-mannosidase I and glucosidase I inhibitors on the transport of cathepsin D in HepG2 cells and fibroblasts may indicate that different intermediates in the biosynthetic pathway of asparagine-linked oligosaccharides participate in the transport of lysosomal enzymes in the two cell types.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验