Soltanian Mohamad R, Amooie Mohammad A, Cole David R, Darrah Thomas H, Graham David E, Pfiffner Susan M, Phelps Tommy J, Moortgat Joachim
School of Earth Sciences, The Ohio State University, Columbus, OH.
Department of Geology, University of Cincinnati, Cincinnati, OH.
Ground Water. 2018 Mar;56(2):176-186. doi: 10.1111/gwat.12633. Epub 2018 Jan 16.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO ) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH ). In this multicomponent multiphase displacement process, CO competes with CH in terms of dissolution, and CH tends to exsolve from the aqueous into a gaseous phase. Because CH has a lower viscosity than injected CO , CH is swept up into a 'bank' of CH -rich gas ahead of the CO displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO front. On the other hand, the emergence of gaseous CH is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO if the cap rock is compromised. Open fractures or faults and wells could result in CH contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large-scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic-plus-association equation-of-state is used to describe the non-linear phase behavior of multiphase brine-CH -CO mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH -rich (up to 90 mol%) gas as a consequence of CO injection, with important implications for the risk assessment of future GCS projects.
在地质碳封存(GCS)的背景下,二氧化碳(CO₂)通常被注入充满卤水的深层地层中,这些卤水可能含有溶解的轻质烃类,如甲烷(CH₄)。在这个多组分多相驱替过程中,CO₂在溶解方面与CH₄竞争,并且CH₄倾向于从水相逸出进入气相。由于CH₄的粘度低于注入的CO₂,CH₄在CO₂驱替前沿之前被卷入富含CH₄的气“带”中。一方面,这可能为接近的CO₂前沿提供有用的示踪信号。另一方面,气态CH₄的出现是不理想的,因为如果盖层受到破坏,它会带来比CO₂更强大的温室气体泄漏风险。开放的裂缝、断层和井可能导致CH₄对上覆地下水含水层的污染以及地表排放。我们通过对一个大规模GCS试点项目(密西西比州克兰菲尔德附近)进行详细的数值模拟来研究这个过程,该项目有丰富的现场数据。使用精确的立方加缔合状态方程来描述多相卤水 - CH₄ - CO₂混合物的非线性相行为,并利用两口观测井中的突破曲线来约束运移过程。现场数据和模拟都确实表明,由于注入CO₂,会形成一个广泛的富含CH₄(高达90摩尔%)的气团,这对未来GCS项目的风险评估具有重要意义。