Suppr超能文献

A Robust Optimization Approach to Cancer Treatment under Toxicity Uncertainty.

作者信息

Zhu Junfeng, Badri Hamidreza, Leder Kevin

机构信息

Industrial and Systems Engineering, University of Minnesota, 111 Church street SE, Minneapolis, MN, 55455, USA.

出版信息

Methods Mol Biol. 2018;1711:297-331. doi: 10.1007/978-1-4939-7493-1_15.

Abstract

The design of optimal protocols plays an important role in cancer treatment. However, in clinical applications, the outcomes under the optimal protocols are sensitive to variations of parameter settings such as drug effects and the attributes of age, weight, and health conditions in human subjects. One approach to overcoming this challenge is to formulate the problem of finding an optimal treatment protocol as a robust optimization problem (ROP) that takes parameter uncertainty into account. In this chapter, we describe a method to model toxicity uncertainty. We then apply a mixed integer ROP to derive the optimal protocols that minimize the cumulative tumor size. While our method may be applied to other cancers, in this work we focus on the treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKI). For simplicity, we focus on one particular mode of toxicity arising from TKI therapy, low blood cell counts, in particular low absolute neutrophil count (ANC). We develop optimization methods for locating optimal treatment protocols assuming that the rate of decrease of ANC varies within a given interval. We further investigated the relationship between parameter uncertainty and optimal protocols. Our results suggest that the dosing schedule can significantly reduce tumor size without recurrence in 360 weeks while insuring that toxicity constraints are satisfied for all realizations of uncertain parameters.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验