He Qie, Zhu Junfeng, Dingli David, Foo Jasmine, Leder Kevin Zox
Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, USA.
Department of Hematology, Mayo Clinic, Rochester, MN, USA.
PLoS Comput Biol. 2016 Oct 20;12(10):e1005129. doi: 10.1371/journal.pcbi.1005129. eCollection 2016 Oct.
Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib) have been developed to treat Chronic Myeloid Leukemia (CML). Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc.) remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature.
在过去十年中,已经开发出几种靶向疗法(如伊马替尼、达沙替尼、尼洛替尼)来治疗慢性粒细胞白血病(CML)。尽管对治疗有初始反应,但耐药性仍然是一些CML患者面临的问题。最近的研究表明,在大量患者中可以检测到治疗前就存在的耐药突变,并且这可能与最终的治疗失败有关。一种提高治疗效果的提议方法是使用多种靶向疗法的联合。然而,这种联合疗法的设计(时机、顺序等)仍然是一个悬而未决的挑战。在这项工作中,我们对CML对联合疗法反应的动态进行数学建模,并分析联合治疗方案对已有耐药性患者治疗效果的影响。然后,我们提出一个优化问题,根据我们的常微分方程模型,基于CML的演变找到多种疗法的最佳方案。由于存在常微分方程约束和整数变量,由此产生的优化问题并不简单。我们的模型还通过跟踪患者中性粒细胞计数对治疗的反应动态纳入了药物毒性约束。我们使用从文献中的临床数据估计的参数,确定在假设患者中使治疗失败时间最大化的最佳联合策略。