IEEE Trans Biomed Eng. 2018 Feb;65(2):469-476. doi: 10.1109/TBME.2017.2775598.
Subject-specific musculoskeletal models are increasingly used in biomedical applications to predict endpoint forces due to muscle activation, matching predicted forces to experimentally observed forces at a specific limb configuration. However, it is difficult to precisely measure the limb configuration at which these forces are observed. The consequent uncertainty in limb configuration might contribute to errors in model predictions. We therefore evaluated how uncertainties in limb configuration measurement contributed to errors in force prediction, using data from in vivo measurements in the rat hindlimb. We used a data-driven approach to estimate the uncertainty in estimated limb configuration and then used this configuration uncertainty to evaluate the consequent uncertainty in force predictions, using Monte Carlo simulations. We used subject-specific models of joint structures (i.e., centers and axes of rotation) in order to estimate limb configurations for each animal. The standard deviation of the distribution of predicted force directions resulting from configuration uncertainty was small, ranging between 0.27° and 3.05° across muscles. For most muscles, this standard deviation was considerably smaller than the error between observed and predicted forces (between 0.57° and 70.96°), suggesting that uncertainty in limb configuration could not explain inaccuracies in model predictions. Instead, our results suggest that inaccuracies in muscle model parameters, most likely in parameters specifying muscle moment arms, are the main source of prediction errors by musculoskeletal models in the rat hindlimb.
特定于肢体的肌肉骨骼模型越来越多地用于生物医学应用中,以预测由于肌肉激活而导致的末端力,将预测的力与特定肢体构型下实验观察到的力相匹配。然而,精确测量观察到这些力的肢体构型是很困难的。因此,肢体构型的不确定性可能会导致模型预测的误差。我们使用来自大鼠后肢体内测量的数据,评估了肢体构型测量的不确定性如何导致力预测的误差。我们使用数据驱动的方法来估计估计肢体构型的不确定性,然后使用这种构型不确定性来通过蒙特卡罗模拟评估力预测的相应不确定性。我们使用关节结构(即旋转中心和轴)的特定于主体的模型来估计每个动物的肢体构型。由于构型不确定性而导致的预测力方向分布的标准偏差很小,在肌肉之间的范围在 0.27°到 3.05°之间。对于大多数肌肉,该标准偏差明显小于观察到的和预测的力之间的误差(在 0.57°到 70.96°之间),这表明肢体构型的不确定性不能解释模型预测的不准确性。相反,我们的结果表明,肌肉模型参数的不准确性,很可能是指定肌肉力臂的参数,是大鼠后肢肌肉骨骼模型预测误差的主要来源。