Adobe Systems Incorporated, San Jose, CA 95110, USA.
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Bioinformatics. 2018 Jun 1;34(11):1875-1883. doi: 10.1093/bioinformatics/bty014.
Recent studies have revealed a complex interplay between environment, the human microbiome and health and disease. Mediation analysis of the human microbiome in these complex relationships could potentially provide insights into the role of the microbiome in the etiology of disease and, more importantly, lead to novel clinical interventions by modulating the microbiome. However, due to the high dimensionality, sparsity, non-normality and phylogenetic structure of microbiome data, none of the existing methods are suitable for testing such clinically important mediation effect.
We propose a distance-based approach for testing the mediation effect of the human microbiome. In the framework, the nonlinear relationship between the human microbiome and independent/dependent variables is captured implicitly through the use of sample-wise ecological distances, and the phylogenetic tree information is conveniently incorporated by using phylogeny-based distance metrics. Multiple distance metrics are utilized to maximize the power to detect various types of mediation effect. Simulation studies demonstrate that our method has correct Type I error control, and is robust and powerful under various mediation models. Application to a real gut microbiome dataset revealed that the association between the dietary fiber intake and body mass index was mediated by the gut microbiome.
An R package 'MedTest' is freely available at https://github.com/jchen1981/MedTest.
zhiwei@njit.edu or chen.jun2@mayo.edu.
Supplementary data are available at Bioinformatics online.
最近的研究揭示了环境、人类微生物组与健康和疾病之间的复杂相互作用。在这些复杂关系中对人类微生物组进行中介分析,可能有助于深入了解微生物组在疾病发病机制中的作用,更重要的是,通过调节微生物组来实现新的临床干预。然而,由于微生物组数据的高维性、稀疏性、非正态性和系统发育结构,现有的方法都不适合测试这种具有临床重要意义的中介效应。
我们提出了一种基于距离的方法来检验人类微生物组的中介效应。在该框架中,通过使用样本间的生态距离,隐含地捕捉了人类微生物组与独立/因变量之间的非线性关系,并且通过使用基于系统发育的距离度量,方便地合并了系统发育树信息。利用多种距离度量来最大化检测各种类型中介效应的能力。模拟研究表明,我们的方法具有正确的Ⅰ型错误控制,并且在各种中介模型下都是稳健且强大的。应用于真实的肠道微生物组数据集表明,膳食纤维摄入与体重指数之间的关联是由肠道微生物组介导的。
一个 R 包 'MedTest' 可在 https://github.com/jchen1981/MedTest 上免费获取。
zhiwei@njit.edu 或 chen.jun2@mayo.edu。
补充数据可在生物信息学在线获取。