Suppr超能文献

尾部极端事件的可预测性。

Predictability of fat-tailed extremes.

机构信息

Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading RG6 6AX, United Kingdom.

Meteorological Institute, University of Hamburg, Grindelberg 7, 20144 Hamburg, Germany.

出版信息

Phys Rev E. 2017 Sep;96(3-1):032120. doi: 10.1103/PhysRevE.96.032120. Epub 2017 Sep 13.

Abstract

We conjecture for a linear stochastic differential equation that the predictability of threshold exceedances (I) improves with the event magnitude when the noise is a so-called correlated additive-multiplicative noise, no matter the nature of the stochastic innovations, and also improves when (II) the noise is purely additive, obeying a distribution that decays fast, i.e., not by a power law, and (III) deteriorates only when the additive noise distribution follows a power law. The predictability is measured by a summary index of the receiver operating characteristic curve. We provide support to our conjecture-to compliment reports in the existing literature on (II)-by a set of case studies. Calculations for the prediction skill are conducted in some cases by a direct numerical time-series-data-driven approach and in other cases by an analytical or semianalytical approach developed here.

摘要

我们推测对于一个线性随机微分方程,当噪声是所谓的相关加性乘法噪声时,无论随机创新的性质如何,超过阈值的可预测性(I)随着事件幅度的增加而提高,并且当(II)噪声是纯粹的加性噪声时,服从快速衰减的分布,即不是幂律分布时,可预测性也会提高,并且(III)只有当加性噪声分布遵循幂律时,可预测性才会降低。可预测性通过接收者操作特征曲线的摘要指标来衡量。我们通过一组案例研究为我们的推测提供了支持,以补充现有文献中关于(II)的报告。在某些情况下,通过直接的数值时间序列数据驱动方法进行预测技巧的计算,在其他情况下通过这里开发的分析或半分析方法进行计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验