Suppr超能文献

统一视角:哈密顿晶格中的离散呼吸子孤波及其稳定性的能量判据

Unifying perspective: Solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability.

机构信息

Grupo de Física No Lineal, Departamento de Física Aplicada I, Universidad de Sevilla, Escuela Politécnica Superior, C/ Virgen de África, 7, 41011-Sevilla, Spain and Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Edificio Celestino Mutis, Avda. Reina Mercedes s/n, 41012-Sevilla, Spain.

Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-9305, USA.

出版信息

Phys Rev E. 2017 Sep;96(3-1):032214. doi: 10.1103/PhysRevE.96.032214. Epub 2017 Sep 15.

Abstract

In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H^{''}(c_{0}) evaluated at the critical velocity c_{0}. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

摘要

在这项工作中,我们提供了两种互补的观点来研究哈密顿非线性动力晶格中孤波的(谱)稳定性,其中 Fermi-Pasta-Ulam 和 Toda 晶格是典型的例子。一种观点是将其视为在共行波坐标系下的定态解的特征值问题,另一种观点则是将其视为周期轨道的平移模。我们将前者的特征值与后者的 Floquet 乘子联系起来,并利用这个表述推导出一个基于能量的谱稳定性判据。它表明,当模型的能量(哈密顿量)H 对波速 c 的函数依赖性改变其单调性时,波稳定性的变化就会发生,这是一个充分(但不是必要)的条件。此外,在发生稳定性变化的临界速度附近,我们基于在临界速度 c_{0} 处评估的哈密顿量 H^{''}(c_{0})的二阶导数,提供了对不稳定特征值的一个显式的、一级近似的计算。我们用一系列可解析和数值处理的例子验证了这一结论,并讨论了它与最近基于能量的离散Breathers 稳定性判据的相似性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验