Suppr超能文献

幅度序列相关性评估非线性:多标度模型和心跳波动的应用。

Correlations in magnitude series to assess nonlinearities: Application to multifractal models and heartbeat fluctuations.

机构信息

Dpto. de Física Aplicada II, ETSI de Telecomunicación, University of Málaga, 29071 Málaga, Spain.

Dpto. de Didáctica de la Lenguas, las Artes y el Deporte, Facultad de C.C. E.E. University of Málaga, 29071 Málaga, Spain.

出版信息

Phys Rev E. 2017 Sep;96(3-1):032218. doi: 10.1103/PhysRevE.96.032218. Epub 2017 Sep 19.

Abstract

The correlation properties of the magnitude of a time series are associated with nonlinear and multifractal properties and have been applied in a great variety of fields. Here we have obtained the analytical expression of the autocorrelation of the magnitude series (C_{|x|}) of a linear Gaussian noise as a function of its autocorrelation (C_{x}). For both, models and natural signals, the deviation of C_{|x|} from its expectation in linear Gaussian noises can be used as an index of nonlinearity that can be applied to relatively short records and does not require the presence of scaling in the time series under study. In a model of artificial Gaussian multifractal signal we use this approach to analyze the relation between nonlinearity and multifractallity and show that the former implies the latter but the reverse is not true. We also apply this approach to analyze experimental data: heart-beat records during rest and moderate exercise. For each individual subject, we observe higher nonlinearities during rest. This behavior is also achieved on average for the analyzed set of 10 semiprofessional soccer players. This result agrees with the fact that other measures of complexity are dramatically reduced during exercise and can shed light on its relationship with the withdrawal of parasympathetic tone and/or the activation of sympathetic activity during physical activity.

摘要

时间序列幅度的相关性质与非线性和多重分形性质相关联,并已应用于各种领域。在这里,我们获得了线性高斯噪声幅度序列(|x|)的自相关(C_{|x|})作为其自相关(C_{x})的函数的解析表达式。对于模型和自然信号,偏离线性高斯噪声中 C_{|x|}的预期值可以用作非线性的指标,该指标可应用于相对较短的记录,并且不需要在所研究的时间序列中存在标度。在人工高斯多重分形信号的模型中,我们使用这种方法来分析非线性和多重分形之间的关系,并表明前者意味着后者,但反之则不然。我们还将这种方法应用于分析实验数据:休息和适度运动期间的心跳记录。对于每个个体,我们观察到在休息期间具有更高的非线性。对于分析的 10 名半职业足球运动员的集合,也可以平均获得这种行为。这一结果与其他复杂性指标在运动期间显著降低的事实一致,并且可以阐明其与在体育活动期间副交感神经张力的撤出和/或交感神经活动的激活之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验