IEEE Trans Biomed Eng. 2018 Oct;65(10):2345-2354. doi: 10.1109/TBME.2018.2797158. Epub 2018 Jan 23.
Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of Congestive Heart Failure (CHF). Yet, it crucially builds on the interpolation of RR intervals series, which has been generically performed with limited links to CHF pathophysiology. We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time. We hypothesize that markers estimated from our novel framework are also effective for mortality prediction in severe CHF. We merge multifractal analysis within a methodological framework based on inhomogeneous point process models of heartbeat dynamics. Specifically, wavelet coefficients and wavelet leaders are computed over measures extracted from instantaneous statistics of probability density functions characterizing and predicting the time until the next heartbeat event occurs. The proposed approach is tested on data from 94 CHF patients, aiming at predicting survivor and non-survivor individuals as determined after a 4 years follow up. Instantaneous markers of vagal and sympatho-vagal dynamics display power-law scaling for a large range of scales, from s to s. Using standard SVM algorithms, the proposed inhomogeneous point-process representation based multifractal analysis achieved the best CHF mortality prediction accuracy of 79.11 % (sensitivity 90.48%, specificity 67.74%). Our results suggest that heartbeat scaling and multifractal properties in CHF patients are not generated at the sinus-node level, but rather by the intrinsic action of vagal short-term control and of sympatho-vagal fluctuations associated with circadian cardiovascular control, especially within the VLF band. These markers might provide critical information in devising a clinical tool for individualized prediction of survivor and non-survivor CHF patients.
多尺度分形分析已被证明可提供心力衰竭(CHF)的有前途的生物标志物。然而,它关键依赖于 RR 间隔序列的内插,而 RR 间隔序列的内插与 CHF 病理生理学的联系非常有限。我们设计了一种从连续时间定义的心跳衍生序列中估计多重分形自主动力学的新方法。我们假设从我们的新框架中估计的标志物对于严重 CHF 的死亡率预测也是有效的。我们将多重分形分析合并到基于心跳动力学不均匀点过程模型的方法框架中。具体而言,小波系数和小波领导者是在从用于表征和预测下一心跳事件发生时间的概率密度函数的瞬时统计量中提取的度量上计算的。该方法在 94 名 CHF 患者的数据上进行了测试,目的是预测在 4 年随访后确定的幸存者和非幸存者个体。迷走神经和交感神经动态的瞬时标志物在从 s 到 s 的较大尺度范围内显示幂律标度。使用标准 SVM 算法,基于非均匀点过程表示的提出的多重分形分析达到了最佳的 CHF 死亡率预测精度为 79.11%(敏感性为 90.48%,特异性为 67.74%)。我们的结果表明,CHF 患者的心跳标度和多重分形性质不是在窦房结水平产生的,而是由迷走神经短期控制的内在作用以及与昼夜心血管控制相关的交感神经波动产生的,尤其是在 VLF 频段内。这些标志物可能为设计用于个体预测幸存者和非幸存者 CHF 患者的临床工具提供关键信息。