Suppr超能文献

酶网络中的最佳信息传递:场论公式。

Optimal information transfer in enzymatic networks: A field theoretic formulation.

机构信息

Department of Chemistry, The University of Texas at Austin, Texas 78712, USA.

Department of Physics, Case Western Reserve University, Ohio 44106, USA.

出版信息

Phys Rev E. 2017 Jul;96(1-1):012406. doi: 10.1103/PhysRevE.96.012406. Epub 2017 Jul 14.

Abstract

Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014)2160-330810.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.

摘要

酶网络中的信号通常是由环境波动触发的,这些波动会导致一系列随机化学反应,从而导致信号被噪声破坏。例如,信息流是由细胞外配体与受体的结合引发的,这种结合通过涉及激酶-磷酸酶随机化学反应的级联传递。对于一类这样的网络,我们开发了一种通用的场论方法来计算信号传输中的误差作为适当控制变量的函数。该理论在一个简单的推拉网络(激酶-磷酸酶级联中的一个模块)上的应用,恢复了以前使用阴影微积分[Hinczewski 和 Thirumalai,Phys. Rev. X 4, 041017 (2014)2160-330810.1103/PhysRevX.4.041017]获得的信号传输误差的精确结果。我们通过研究具有两个连接的推拉模块的反应级联中的最小噪声降低误差来展示该理论的通用性。这样的级联表现为具有伪中间产物的有效三物种网络。在这种情况下,导致输入和输出之间误差的平方最小的最优信息传递会出现时间延迟,该延迟由伪中间产物的衰减率的倒数给出。令人惊讶的是,在这些例子中,考虑到分子的非线性和离散性的模拟计算的最小误差与线性理论的预测相符。相比之下,在酶促推拉网络中信号传播的误差的模拟和线性理论的预测之间存在显著偏差,对于某些参数范围。二阶微扰修正的包含表明,模拟和理论预测之间的差异最小化。我们的研究表明,随机生物信号的场论表述为理解任意复杂网络中的误差传播提供了一种系统的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验