Mouhli Ahmed, Ayeb Habib, Othman Tahar, Fresnais Jérôme, Dupuis Vincent, Nemitz Ian R, Pendery Joel S, Rosenblatt Charles, Sandre Olivier, Lacaze Emmanuelle
Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matiere Molle et de la Modélisation Electromagnétique (LP3ME), 2092 Tunis, Tunisie.
Sorbonne Universités, UPMC Univ Paris 06, UMR 8234, PHENIX, F75005 Paris, France.
Phys Rev E. 2017 Jul;96(1-1):012706. doi: 10.1103/PhysRevE.96.012706. Epub 2017 Jul 24.
A long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic field of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon is rarely measured to be large, due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal: the pentylcyanobiphenyl (5CB), doped with 6 nm diameter magnetic and nonmagnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparticle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover, the magnetic Fredericksz threshold exhibits nonmonotonic behavior as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticles than those introduced when the concentration is increased above c=0.05 weight fraction (volume fraction 3.5×10^{-2}). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and nonmagnetic nanoparticles. For nonmagnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules.
很久以前,布罗沙尔和德热纳预测了在向列型液晶与铁磁颗粒的混合物(即所谓的铁磁液晶)中显著降低弗雷德里克斯转变临界磁场(磁弗雷德里克斯阈值)的可能性。由于纳米颗粒表面诱导的软垂直锚定,这种现象很少被测量到有很大的变化。在此,我们展示了对磁弗雷德里克斯转变的光学研究,并结合了对经典向列型液晶:掺杂有直径6nm磁性和非磁性纳米颗粒的戊基氰基联苯(5CB)的光散射研究。令人惊讶的是,对于这两种纳米颗粒,我们在室温下观察到在低纳米颗粒浓度时弗雷德里克斯转变阈值场的净降低,这似乎与纳米颗粒被聚二甲基硅氧烷共聚物链刷包覆有关,该链刷在纳米颗粒表面诱导指向矢的平面锚定。此外,对于这两种类型的纳米颗粒,磁弗雷德里克斯阈值随纳米颗粒浓度呈现非单调行为,首先降低至比纯5CB低23%至31%的值,然后随着纳米颗粒浓度的进一步增加而增加。这被解释为在约0.02重量分数左右开始的聚集,消耗的孤立纳米颗粒比浓度增加到c = 0.05重量分数(体积分数3.5×10⁻²)以上时引入的更多。这表明孤立纳米颗粒相对于聚集体对阈值的影响更大。从动态光散射测量中我们推断,尽管当纳米颗粒浓度增加时两种纳米颗粒的磁阈值降低情况相似,但这种降低的起源对于磁性和非磁性纳米颗粒是不同的。对于非磁性纳米颗粒,这种行为可能与由于弱平面锚定导致的弹性常数降低有关。对于磁性纳米颗粒,液晶分子与磁性纳米颗粒之间存在不可忽略的局部磁相互作用,导致平均序参量增加。因此,这种磁相互作用有利于在存在外部磁场时更容易的液晶指向矢旋转,能够使纳米颗粒的磁矩与分子一起重新定向。