Suppr超能文献

Periodic jetting and monodisperse jet drops from oblique gas injection.

作者信息

McRae Oliver, Gaillard Antoine, Bird James C

机构信息

Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA.

Department of Physics, Ecole Normale Superieure, 24 rue Lhomond 75005 Paris, France.

出版信息

Phys Rev E. 2017 Jul;96(1-1):013112. doi: 10.1103/PhysRevE.96.013112. Epub 2017 Jul 19.

Abstract

When air is blown in a straw or tube near an air-liquid interface, typically one of two behaviors is observed: a dimple in the liquid's surface, or a frenzy of sputtering bubbles, waves, and spray. Here we report and characterize an intermediate regime that can develop when a confined air jet enters the interface at an angle. This regime is oscillatory with a distinct characteristic frequency and can develop periodic angled jets that can break up into monodisperse aerosols. The underlying mechanisms responsible for this highly periodic regime are not well understood. Here we flow a continuous stream of gas through a tube near a liquid surface, observing both optically and acoustically the deformation of the liquid-air interface as various parameters are systematically adjusted. We show that the Kelvin-Helmholtz instability is responsible for the inception of waves within a cavity formed by the gas. Inertia, gravity, and capillary forces both shape the cavity and govern the frequency and amplitude of these gas-induced cavity waves. The flapping cavity focuses the waves into a series of periodic jets that can break up into droplets following the Rayleigh-Plateau instability. We present scaling arguments to rationalize the fundamental frequencies driving this system, as well as the conditions that bound the periodic regime. These frequencies and conditions compare well with our experimental results.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验