Alekseev Oleg, Mineev-Weinstein Mark
International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil.
Phys Rev E. 2017 Jul;96(1-1):010103. doi: 10.1103/PhysRevE.96.010103. Epub 2017 Jul 20.
We develop statistical mechanics for stochastic growth processes and apply it to Laplacian growth by using its remarkable connection with a random matrix theory. The Laplacian growth equation is obtained from the variation principle and describes adiabatic (quasistatic) thermodynamic processes in the two-dimensional Dyson gas. By using Einstein's theory of thermodynamic fluctuations we consider transitional probabilities between thermodynamic states, which are in a one-to-one correspondence with simply connected domains occupied by gas. Transitions between these domains are described by the stochastic Laplacian growth equation, while the transitional probabilities coincide with a free-particle propagator on an infinite-dimensional complex manifold with a Kähler metric.
我们为随机增长过程发展了统计力学,并通过将其与随机矩阵理论建立的显著联系,将其应用于拉普拉斯增长。拉普拉斯增长方程由变分原理得到,描述了二维戴森气体中的绝热(准静态)热力学过程。利用爱因斯坦的热力学涨落理论,我们考虑了热力学状态之间的跃迁概率,这些状态与气体占据的单连通区域一一对应。这些区域之间的跃迁由随机拉普拉斯增长方程描述,而跃迁概率与具有凯勒度量的无限维复流形上的自由粒子传播子一致。