Department of Physics, Koç University, Sarıyer, İstanbul, 34450, Turkey.
Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark.
Phys Rev E. 2017 Dec;96(6-1):062120. doi: 10.1103/PhysRevE.96.062120. Epub 2017 Dec 18.
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
我们提出了一种由两个超导传输线谐振器组成的量子热机,它们通过类光机械耦合相互作用。一个谐振器周期性地受到热泵的激励。由于耦合,非相干驱动的谐振器会引起另一个谐振器的相干振荡。在热力学相空间中出现了一个极限环,表示有限的功率输出。该系统实现了光子活塞的全电模拟。与机械运动不同,在我们的情况下,功率输出是通过相干的电充电获得的。我们通过求解量子主方程和经典朗之万方程来探索我们系统的量子和经典描述之间的差异。具体来说,我们计算了激发数的平均值、二阶相干性以及熵、温度、功率和平均能量,以揭示系统统计和热力学性质中量子行为的特征。我们发现了在低温下发动机功率输出的量子增强的证据。