Rodrigues Ines Corveira, Steele Gary Alexander, Bothner Daniel
Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, Netherlands.
Department of Physics, ETH Zürich, Zurich, Switzerland.
Sci Adv. 2022 Aug 26;8(34):eabq1690. doi: 10.1126/sciadv.abq1690.
Photon-pressure coupling between two superconducting circuits is a promising platform for investigating radiation-pressure coupling in distinct parameter regimes and for the development of radio-frequency (RF) quantum photonics and quantum-limited RF sensing. Here, we implement photon-pressure coupling between two superconducting circuits, one of which can be operated as a parametric amplifier. We demonstrate a Kerr-based enhancement of the photon-pressure single-photon coupling rate and an increase of the cooperativity by one order of magnitude in the amplifier regime. In addition, we observe that the intracavity amplification reduces the measurement imprecision of RF signal detection. Last, we demonstrate that RF mode sideband cooling is unexpectedly not limited to the effective amplifier mode temperature arising from quantum noise amplification, which we interpret in the context of nonreciprocal heat transfer between the two circuits. Our results demonstrate how Kerr amplification can be used as resource for enhanced photon-pressure systems and Kerr cavity optomechanics.
两个超导电路之间的光压耦合是一个很有前景的平台,可用于研究不同参数 regime 下的辐射压力耦合,以及用于发展射频(RF)量子光子学和量子极限 RF 传感。在此,我们实现了两个超导电路之间的光压耦合,其中一个可作为参量放大器运行。我们展示了基于克尔效应的光压单光子耦合率增强,以及在放大器 regime 下协同性提高了一个数量级。此外,我们观察到腔内放大降低了 RF 信号检测的测量不精确性。最后,我们证明 RF 模式边带冷却意外地不限于由量子噪声放大产生的有效放大器模式温度,我们在两个电路之间的非互易热传递背景下对此进行了解释。我们的结果展示了克尔放大如何可作为增强光压系统和克尔腔光力学的资源。