Suppr超能文献

连续时间的反伊辛问题:一种潜在变量方法。

Inverse Ising problem in continuous time: A latent variable approach.

机构信息

Artificial Intelligence Group, Technische Universität, Marchstr. 23, 10587 Berlin, Germany.

出版信息

Phys Rev E. 2017 Dec;96(6-1):062104. doi: 10.1103/PhysRevE.96.062104. Epub 2017 Dec 4.

Abstract

We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

摘要

我们考虑逆伊辛问题

从具有连续时间 Glauber 动力学的模型的观测自旋轨迹中推断网络耦合。通过引入两组辅助潜在随机变量,我们将似然函数转化为一种形式,允许使用具有解析更新的简单迭代推理算法。这些变量是(1)泊松变量,用于线性化点过程似然函数中典型的指数项,(2)Pólya-Gamma 变量,使似然函数在耦合参数中二次方。使用增强的似然函数,我们推导出期望最大化(EM)算法来获得网络参数的最大似然估计。通过使用第三组潜在变量,我们通过 L1 正则化将 EM 算法扩展到稀疏耦合。最后,我们使用变分方法开发了一种有效的近似贝叶斯推理算法。我们在从伊辛模型模拟的数据上演示了我们算法的性能。对于从具有尖峰神经元的更具生物学合理性的网络模拟的数据,我们表明伊辛模型很好地捕捉了数据的低阶统计量以及伊辛耦合与模拟网络的潜在突触结构之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验