Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
Phys Rev E. 2017 Dec;96(6-1):063312. doi: 10.1103/PhysRevE.96.063312. Epub 2017 Dec 26.
For the purpose of checking material conservation of various numerical algorithms used in the self-consistent-field theory (SCFT) of polymeric systems, we develop an algebraic method using matrix and bra-ket notation, which traces the Hermiticity of the product of the volume and evolution matrices. Algebraic tests for material conservation reveal that the popular pseudospectral method in the Cartesian grid conserves material perfectly, while the finite-volume method (FVM) is the proper tool when real-space SCFT with the Crank-Nicolson method is adopted in orthogonal coordinate systems. We also find that alternating direction implicit methods combined with the FVM exhibit small mass errors in the SCFT calculation. By introducing fractional cells in the FVM formulation, accurate SCFT calculations are performed for systems with irregular geometries and the results are consistent with previous experimental and theoretical works.
为了检查用于聚合体系自洽场理论 (SCFT) 的各种数值算法的物质守恒性,我们开发了一种使用矩阵和 bra-ket 符号的代数方法,该方法可以跟踪体积和演化矩阵乘积的 Hermiticity。物质守恒的代数检验表明,在笛卡尔网格中流行的伪谱方法可以完美地保持物质守恒,而当采用正交坐标系中的 Crank-Nicolson 方法进行实空间 SCFT 时,有限体积方法 (FVM) 是合适的工具。我们还发现,与 FVM 结合的交替方向隐式方法在 SCFT 计算中表现出较小的质量误差。通过在 FVM 公式中引入分数单元,可以对具有不规则几何形状的系统进行精确的 SCFT 计算,并且结果与以前的实验和理论工作一致。