Departamento de Física, Universidade de Aveiro and I3N Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
DEEC/FEUP and INESC TEC, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Phys Rev E. 2017 Oct;96(4-1):042220. doi: 10.1103/PhysRevE.96.042220. Epub 2017 Oct 31.
In this work, we present parameter regions for the existence of stable plain solitons of the cubic complex Ginzburg-Landau equation (CGLE) with higher-order terms associated with a fourth-order expansion. Using a perturbation approach around the nonlinear Schrödinger equation soliton and a full numerical analysis that solves an ordinary differential equation for the soliton profiles and using the Evans method in the search for unstable eigenvalues, we have found that the minimum equation allowing these stable solitons is the cubic CGLE plus a term known in optics as Raman-delayed response, which is responsible for the redshift of the spectrum. The other favorable term for the occurrence of stable solitons is a term that represents the increase of nonlinear gain with higher frequencies. At the stability boundary, a bifurcation occurs giving rise to stable oscillatory solitons for higher values of the nonlinear gain. These oscillations can have very high amplitudes, with the pulse energy changing more than two orders of magnitude in a period, and they can even exhibit more complex dynamics such as period-doubling.
在这项工作中,我们提出了存在具有与四次展开相关的高阶项的立方复 Ginzburg-Landau 方程(CGLE)稳定平面孤子的参数区域。我们使用非线性薛定谔方程孤子的微扰方法和用于求解孤子轮廓的常微分方程的全数值分析,并使用 Evans 方法搜索不稳定本征值,发现允许这些稳定孤子的最小方程是立方 CGLE 加上一个在光学中称为拉曼延迟响应的项,它负责光谱的红移。另一个有利于稳定孤子发生的项是代表非线性增益随频率增加的项。在稳定性边界处,发生分岔,导致非线性增益较高时产生稳定的振荡孤子。这些振荡可以具有非常高的幅度,在一个周期内脉冲能量变化超过两个数量级,并且它们甚至可以表现出更复杂的动力学,例如倍周期。