Suppr超能文献

锁模激光器中的脉动孤子、混沌孤子、倍周期及脉冲共存:复金兹堡 - 朗道方程方法

Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach.

作者信息

Akhmediev N, Soto-Crespo J M, Town G

机构信息

Optical Sciences Centre, Research School of Physical Sciences and Engineering, Institute of Advanced Studies, Australian National University, Australian Capital Territory 0200, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 2):056602. doi: 10.1103/PhysRevE.63.056602. Epub 2001 Apr 9.

Abstract

The complex Ginzburg-Landau equation (CGLE) is a standard model for pulse generation in mode-locked lasers with fast saturable absorbers. We have found complicated pulsating behavior of solitons of the CGLE and regions of their existence in the five-dimensional parameter space. We have found zero-velocity, moving and exploding pulsating localized structures, period doubling (PD) of pulsations and the sequence of PD bifurcations. We have also found chaotic pulsating solitons. We have plotted regions of parameters of the CGLE where pulsating solutions exist. We also demonstrate the coexistence (bi- and multistability) of different types of pulsating solutions in certain regions of the parameter space of the CGLE.

摘要

复金兹堡-朗道方程(CGLE)是具有快速饱和吸收体的锁模激光器中脉冲产生的标准模型。我们发现了CGLE孤子的复杂脉动行为及其在五维参数空间中的存在区域。我们发现了零速度、移动和爆炸的脉动局域结构、脉动的倍周期(PD)以及PD分岔序列。我们还发现了混沌脉动孤子。我们绘制了CGLE中存在脉动解的参数区域。我们还展示了在CGLE参数空间的某些区域中不同类型脉动解的共存(双稳和多稳)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验