Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
Phys Rev E. 2017 Oct;96(4-1):043107. doi: 10.1103/PhysRevE.96.043107. Epub 2017 Oct 13.
The dynamics of a film climbing the outside of a vertical cylinder under the competing effects of a thermally driven surface tension gradient and gravity is examined through numerical simulations of a thin-film model for the film height. The model, including boundary conditions, depends on three parameters, the scaled cylinder radius R[over ̂], the upstream film height h_{∞}, and the downstream precursor film thickness b, and reduces to the model for Marangoni driven film climbing a vertical plate in the limit R[over ̂]→∞. The axisymmetric advancing front displays dynamics similar to that found along a vertical plate where, depending on h_{∞}, the film forms a single Lax shock, an undercompressive double shock, or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form for sufficiently small cylinders (below R[over ̂]≈1.15 when b=0.1). The substrate curvature controls the height of the Lax shock, bounds on h_{∞} that define the three distinct solutions, and the maximum growth rate of contact line perturbations to the Lax shock when R[over ̂]=O(1), whereas the three solutions and the stability of the Lax shock converge to the behavior one observes on a vertical plate when R[over ̂]≥O(10). An energy analysis reveals that the azimuthal curvatures of the base state and perturbation, which arise from the annular geometry of the film, promote instability of the advancing contact line.
通过对薄膜高度的薄膜模型进行数值模拟,研究了在热驱动表面张力梯度和重力的竞争作用下,膜在垂直圆柱体外表面爬升的动力学。该模型包括边界条件,取决于三个参数,即标度化的圆柱半径 R[over ̂]、上游膜高 h_{∞}和下游前导膜厚度 b,并在 R[over ̂]→∞时简化为 Marangoni 驱动膜在垂直板上爬升的模型。轴对称的前缘显示出与在垂直板上发现的类似的动力学行为,其中,取决于 h_{∞},膜形成单个 Lax 激波、欠压缩双激波或稀疏-欠压缩激波。对 Lax 激波的线性稳定性分析表明,形成于接触线的指状物的数量与圆柱周长呈线性增加,而对于足够小的圆柱(当 b=0.1 时,R[over ̂]≈1.15 以下)则不会形成指状物。基底曲率控制 Lax 激波的高度、定义三个不同解的 h_{∞}的边界条件以及 R[over ̂]=O(1)时对 Lax 激波的接触线扰动的最大增长率,而三个解和 Lax 激波的稳定性在 R[over ̂]≥O(10)时收敛到在垂直板上观察到的行为。能量分析表明,由于膜的环形几何形状而产生的基态和扰动的角向曲率促进了前进接触线的不稳定性。