Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany.
Phys Rev E. 2017 Oct;96(4-1):042129. doi: 10.1103/PhysRevE.96.042129. Epub 2017 Oct 16.
Systems with interacting degrees of freedom play a prominent role in stochastic thermodynamics. Our aim is to use the concept of detached path probabilities and detached entropy production for bipartite Markov processes and elaborate on a series of special cases including measurement-feedback systems, sensors, and hidden Markov models. For these special cases we show that fluctuation theorems involving the detached entropy production recover known results which have been obtained separately before. Additionally, we show that the fluctuation relation for the detached entropy production can be used in model selection for data stemming from a hidden Markov model. We discuss the relation to previous approaches including those which use information flow or learning rate to quantify the influence of one subsystem on the other. In conclusion, we present a complete framework with which to find fluctuation relations for coupled systems.
具有相互作用自由度的系统在随机热力学中起着重要作用。我们的目的是使用分离路径概率和分离熵产生的概念来描述二部马尔可夫过程,并详细阐述一系列特殊情况,包括测量反馈系统、传感器和隐马尔可夫模型。对于这些特殊情况,我们表明涉及分离熵产生的涨落定理恢复了以前分别获得的已知结果。此外,我们表明,分离熵产生的涨落关系可用于从隐马尔可夫模型得出的数据的模型选择。我们讨论了与以前的方法的关系,包括那些使用信息流或学习率来量化一个子系统对另一个子系统的影响的方法。总之,我们提出了一个完整的框架,用于找到耦合系统的涨落关系。