Suppr超能文献

基于图划分和等周不等式的网络上易感染-感染-易感染传染病的统一平均场框架。

Unified mean-field framework for susceptible-infected-susceptible epidemics on networks, based on graph partitioning and the isoperimetric inequality.

机构信息

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, the Netherlands.

出版信息

Phys Rev E. 2017 Nov;96(5-1):052314. doi: 10.1103/PhysRevE.96.052314. Epub 2017 Nov 27.

Abstract

We propose an approximation framework that unifies and generalizes a number of existing mean-field approximation methods for the susceptible-infected-susceptible (SIS) epidemic model on complex networks. We derive the framework, which we call the unified mean-field framework (UMFF), as a set of approximations of the exact Markovian SIS equations. Our main novelty is that we describe the mean-field approximations from the perspective of the isoperimetric problem, which results in bounds on the UMFF approximation error. These new bounds provide insight in the accuracy of existing mean-field methods, such as the N-intertwined mean-field approximation and heterogeneous mean-field method, which are contained by UMFF. Additionally, the isoperimetric inequality relates the UMFF approximation accuracy to the regularity notions of Szemerédi's regularity lemma.

摘要

我们提出了一个近似框架,该框架统一并推广了复杂网络上易感-感染-易感染(SIS)传染病模型的许多现有平均场近似方法。我们推导出了这个框架,称为统一平均场框架(UMFF),它是对精确马尔可夫 SIS 方程的一系列近似。我们的主要新颖之处在于,我们从等周问题的角度来描述平均场近似,从而得到了 UMFF 近似误差的界。这些新的界提供了对现有平均场方法的准确性的深入了解,例如 UMFF 包含的 N-交织平均场近似和异质平均场方法。此外,等周不等式将 UMFF 近似精度与 Szemerédi 正则性引理的正则性概念联系起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验