Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, the Netherlands.
Phys Rev E. 2017 Nov;96(5-1):052314. doi: 10.1103/PhysRevE.96.052314. Epub 2017 Nov 27.
We propose an approximation framework that unifies and generalizes a number of existing mean-field approximation methods for the susceptible-infected-susceptible (SIS) epidemic model on complex networks. We derive the framework, which we call the unified mean-field framework (UMFF), as a set of approximations of the exact Markovian SIS equations. Our main novelty is that we describe the mean-field approximations from the perspective of the isoperimetric problem, which results in bounds on the UMFF approximation error. These new bounds provide insight in the accuracy of existing mean-field methods, such as the N-intertwined mean-field approximation and heterogeneous mean-field method, which are contained by UMFF. Additionally, the isoperimetric inequality relates the UMFF approximation accuracy to the regularity notions of Szemerédi's regularity lemma.
我们提出了一个近似框架,该框架统一并推广了复杂网络上易感-感染-易感染(SIS)传染病模型的许多现有平均场近似方法。我们推导出了这个框架,称为统一平均场框架(UMFF),它是对精确马尔可夫 SIS 方程的一系列近似。我们的主要新颖之处在于,我们从等周问题的角度来描述平均场近似,从而得到了 UMFF 近似误差的界。这些新的界提供了对现有平均场方法的准确性的深入了解,例如 UMFF 包含的 N-交织平均场近似和异质平均场方法。此外,等周不等式将 UMFF 近似精度与 Szemerédi 正则性引理的正则性概念联系起来。